Implementation of Apriori Algorithm Data Mining for Increase Sales

Main Article Content

Reza Alfianzah Rani Irma Handayani Murniyati Murniyati
Corresponding Author:
Reza Alfianzah | rezaalfianzah88@gmail.com

Copyright (C):
Reza Alfianzah, Rani Irma Handayani, Murniyati Murniyati

Abstract

Any company or organization that wants to survive needs to determine the right business strategy. The product sales data carried out by Lakoe Dessert Pondok Kacang will eventually result in a pile of data, so it is unfortunate if it is not re-analyzed. The products offered vary with a wide variety of products as many as 45 products, to find out the products with the most sales and the relationship between one product and another, one of the algorithms is needed in the data mining algorithm, namely the a priori algorithm to find out, and with the help of the Rapidminer 5 application, with a support value 2,4% and a confidence value 50%, products that customers often buy or are interested in can be found. This study used sales data for March 2020, which amounted to 209 transaction data. From the research, it was found that the item with the name Pudding Strawberry and Pudding Vanilla was the product most purchased by consumers. With knowledge of the most sold products and the patterns of purchasing goods by consumers, Lakoe Dessert Pondok Kacang can develop marketing strategies to market other products by analyzing the profits from selling the most sold products and anticipating running out or empty of stock or materials at a later date.

Keyword: Data Mining, Apriori Algorithm, Sales Data, Rapidminer, Association Rule

Downloads

Download data is not yet available.

Article Details

How to Cite
ALFIANZAH, Reza; HANDAYANI, Rani Irma; MURNIYATI, Murniyati. Implementation of Apriori Algorithm Data Mining for Increase Sales. Sinkron : Jurnal dan Penelitian Teknik Informatika, [S.l.], v. 5, n. 1, p. 17-25, oct. 2020. ISSN 2541-2019. Available at: <http://jurnal.polgan.ac.id/index.php/sinkron/article/view/10587>. Date accessed: 21 oct. 2020. doi: https://doi.org/10.33395/sinkron.v5i1.10587.
Section
Articles
* Abstract viewed = 0 times PDF downloaded = 0 times *

References

Adib, H. S. (2017). Teknik Pengembangan Instrumen Penelitian Ilmiah Di Perguruan Tinggi Keagamaan Islam. Seminar Nasional Pendidikan, Sains Dan Teknologi, 139–157. Retrieved from https://jurnal.unimus.ac.id/index.php/psn12012010/article/view/3054

Adinugroho, S., & Sari, Y. A. (2018). Implementasi Data Mining Menggunakan WEKA (Pertama). Malang: UB Press.

Adiwihardja, C., Hardi, N., & Widyastuty, W. (2019). Implementasi Data Mining Penjualan Kosmetik Pada Toko Zahrani Menggunakan Algoritma Apriori, 11(2), 1–7. Retrieved from http://speed.web.id/ejournal/index.php/speed/article/view/427

Andriyani, D., Harahap, E., Badruzzaman, F. H., Fajar, M. Y., & Darmawan, D. (2019). Aplikasi Microsoft Excel Dalam Penyelesaian Masalah Rata-rata Data Berkelompok Microsoft Excel Application in Solving The Average of Group Data Problems, 18(1), 41–46. Retrieved from https://ejournal.unisba.ac.id/index.php/matematika/article/view/5078

Badrul, M. (2016). Algoritma asosiasi dengan algoritma apriori untuk analisa data penjualan. Pilar Nusa Mandiri, XIII(2), 121–129. Retrieved from http://ejournal.nusamandiri.ac.id/index.php/pilar/article/view/266/236/

Cep, A., Murni, C., & Reynida, H. (2018). Implementasi Data Mining Penjualan Tas Pada Toko Fabella Shop Menggunakan Algoritma Apriori, 10(4), 92–97. Retrieved from http://speed.web.id/ejournal/index.php/speed/article/view/416

Firmansyah, A., & Merlina, N. (2020). Prediksi Pola Penjualan Tiket Kapal Pt. Pelni Cabang Makassar Menggunakan Metode Algoritma Apriori. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 5(2), 183–190. https://doi.org/10.33480/jitk.v5i2.1123

Muflikhah, L., Ratnawati, D. E., & Putri, R. R. M. (2018). Data Mining. Malang: UB Press.

Oktaviani, A., TM Napitupul, G., Sarkawi, D., & Yulianti, I. (2019). Penerapan Data Mining Terhadap Penjualan Pipa Pada Cv. Gaskindo Sentosa Menggunakan Metode Algoritma Apriori. Jurnal Riset Informatika, 1(4), 167–172. https://doi.org/10.34288/jri.v1i4.96

Putra, A. A. C., Haryanto, H., & Dolphina, E. (2018). Implementasi Metode Association Rule Mining Dengan Algoritma Apriori Untuk Rekomendasi Promo Barang. Csrid, 11, 89–99. Retrieved from http://csrid.potensi-utama.ac.id/index.php/CSRID/article/view/277

Putra, J. L., Raharjo, M., Sandi, T. A. A., Ridwan, R., & Prasetyo, R. (2019). Implementasi Algoritma Apriori Terhadap Data Penjualan Pada Perusahaan Retail. Jurnal Pilar Nusa Mandiri, 15(1), 85–90. https://doi.org/10.33480/pilar.v15i1.113

Rahmawati, F., & Merlina, N. (2018). Metode Data Mining Terhadap Data Penjualan Sparepart Mesin Fotocopy Menggunakan Algoritma Apriori. PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic, 6(1), 9–20. https://doi.org/10.33558/piksel.v6i1.1390

Rulianto, J., & Mustika, W. P. (2019). Implementasi Algoritma Apriori Terhadap Data Penjualan Oli Mobil Berbasis Sistem Pencarian Aturan Asosiasi. J-SAKTI (Jurnal Sains Komputer Dan Informatika), 3(2), 316. https://doi.org/10.30645/j-sakti.v3i2.150

Sintia, S., Poningsih, P., Saragih, I. S., Wanto, A., & Damanik, I. S. (2019). Penerapan Algoritma Apriori Dalam Memprediksi Hasil Penjualan Sparepart PC (Studi Kasus : Toko Sentra Computer). Prosiding Seminar Nasional Riset Information Science (SENARIS), 1(September), 910. https://doi.org/10.30645/senaris.v1i0.99

Tamba, S. J., & Bu, E. (2019). IMPLEMENTASI ALGORITMA APRIORI PADA SISTEM PERSEDIAAN BUAH-BUAHAN ( STUDI KASUS : LOTTE MART WHOLESALE MEDAN ), 18, 616–621. Retrieved from https://www.ejurnal.stmik-budidarma.ac.id/index.php/pelita/article/view/1842

Taufiqurrahman, F., Retnowati, N., & Negoro, B. K. (2017). FAKTOR YANG MEMPENGARUHI KEPUTUSAN PEMBELIAN TIDAK TERENCANA PADA MINIMARKET GREENSMART DI KOTA BARU DRIYOREJO-GRESIK. Journal of Manajemen, 3(3). https://doi.org/10.1017/CBO9781107415324.004

Vulandari, R. T. (2017). Data Mining Teori dan Aplikasi Rapidminer (Cetakan 1). Yogyakarta: PENERBIT GAVA MEDIA.