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Abstract: Successful development of the quality of human life in a region is 

determined by the Human Development Index (HDI). Human development 

performance based on the HDI can be measured: long and healthy life, knowledge, 

and a decent standard of living. The HDI is usually grouped into several categories 

to facilitate the classification of the HDI level of each region. This study aimed to 

determine the ability of the bootstrap aggregating (bagging) method to classify the 

HDI by district/city. Bagging is a stochastic machine learning approach that can 

eliminate the variance of the classifier by producing a bootstrap ensemble to obtain 

better accuracy results. The dependent variable in this study was the HDI by 

district/city in 2020. In contrast, life expectancy at birth, expected years of schooling, 

mean years of schooling, and real expenditure per capita are adjusted as independent 

variables. Bagging was applied to the high and low categories of HDI data. The 

bagging method demonstrated good classification performance due to only eight 

classification errors, namely the HDI data which should be in the high category but 

classified into the low category by the bagging method. Based on the results of 

calculations with 25 replications, it can be concluded that the bagging method has a 

very good performance, with an accuracy value of 92.3%, the sensitivity of 100%, 

and specificity of 83.33%. The bagging method is considered very good for the 

classifying the HDI by district/city in Indonesia in 2020 because it has a balanced 

accuracy of 91.67%. 
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INTRODUCTION 

National income and economic growth are important indicators of development. The purpose of the 

development is for the benefit of society. In addition, development should not only focus on economic aspects but 

also human development. This concept, the Human Development Index (HDI), was introduced by the United 

Nations Development Program (UNDP) in 1990 through a report entitled Human Development Report 

(HRD).(Badan Pusat Statistik, 2021c).  

The HDI is an annual human development performance measure published by the Central Bureau of Statistics 

(CBS). HDI describes how people can access the country’s development in terms of health, education, income, 

and other aspects of life. High and low HDI values depend on development programs that are continuously 

implemented and monitored. For HDI to be classified as good, the program’s implementation must be consistent 

with the target and regional priorities based on the HDI categories within the region. Therefore, classification is 

needed to facilitate the classification of the HDI level. 

Human development means expanding people's choices and abilities to live freely in dignity and achieve 

their desires. Human development also refers to changes in the welfare of society and is the goal of all kinds of 

development. Human development performance can be measured from three dimensions: long and healthy life 

represented by the Life Expectancy at birth (LE) indicator, knowledge represented by the Expected Years of 

Schooling (EYS), and Mean Years of Schooling (MYS) indicators, and a decent standard of living represented by 
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an adjusted indicator of real expenditure per capita. These indicators are grouped into single values known as the 

HDI. CBS divides HDI into four categories, namely low category (HDI <60), medium category (60≤HDI<70), 

high category (70≤HDI<80, very high category (HDI ≥80). 

The HDI data are classified as categorical data, thus they can be classified using some methods. Several 

studies are conducted related to HDI, and the methods used are also varied, such as support vector machine, random 

forest, k-nearest neighbor, and others. This study classified HDI in Indonesia in 2020 based on District/City using 

the bagging method. Classification refers to the process of identifying an observation in a certain predetermined 

class. The HDI classification aims to divide District/City in Indonesia into several levels, which later will be served 

as a reference for development targets. For example, as an indicator in measuring the key performance of the 

Regional Incentive Fund (RIF) and determining the General Allocation Fund (GAF). 

The analysis used bagging method. Bagging is a relatively simple but effective ensemble method and has been 

applied in many applications. The use of the bagging method is very helpful to overcome the instability of the 

parameters in the classification. The bagging method’s basic idea is to repeatedly use random resampling with 

replacement to the original data to obtain new data to be used in classification analysis. This study resulted in the 

classification of HDI data and the accuracy of the prediction results.  

 

LITERATURE REVIEW 

Previous research on the HDI classification of districts/cities in Indonesia was carried out by  (Mauludiyah, 

2020) using the random forest method. This study used HDI data in 2018 and 4 attributes related to HDI in 514 

districts/cities in Indonesia. HDI data is then divided into two parts: training data by 60% and testing data by 40%. 

The best accuracy value at m=2 and k=100 is 93.69%. The HDI in Indonesia in 2018 was 71.39 where the HDI 

level was very high at 6%, high at 32%, medium at 57%, and low at 5%. 

Subsequent research was conducted by (Darsyah, 2014) discusses the classification of Central Java Province 

HDI in 2016 using the K-Nearest Neighbor (KNN) method. The results obtained are the average HDI of 70.61. 

The best performance results were obtained at values of k=5 and k=10 at an accuracy rate of 91.43%, sensitivity 

100%, and specificity of 83.33%. 

The next research was conducted by (F Fauzi, 2017) which discusses the HDI classification of Central Java 

Province in 2013-2014 by comparing the K-Nearest Neighbor (K-NN) and Support Vector Machine (SVM) 

methods. The average HDI of Central Java Province in 2013-2014 was 68.68. The results of the HDI classification 

using the K-Nearest Neighbor method obtained an accuracy of 91.64%, a sensitivity of 88.57%, and a specificity 

of 97.14% at values of k = 10, 15, and 20. Meanwhile, the SVM method obtained accuracy with the Radial Basis 

Function kernel (RBF) of 95.36%, the sensitivity of 97.14%, and the specificity of 91.43% with parameter values 

of gamma 1 and C = 1, 10, and 100. Based on the results, the accuracy of the SVM method is better than the K-

NN method in this HDI case. 

Study (Fatkhurokhman Fauzi et al., 2017) discussed the HDI classification of districts/cities across Indonesia 

in 2015. The method used is the Smooth Support Vector Machine (SSVM) kernel RBF. The accuracy rate is 100%. 

A study (Muttaqin & Zulkarnain, 2020) discussed on classification of HDI in 514 districts/cities in Indonesia 

in 2018. This study used cluster analysis, k-means as the cluster analysis method used. There are three groups of 

the results of this study, namely high areas, medium areas, and low areas. The first group or low area consists of 

19 cities. The second group or the middle area consists of 381 districts/cities. The third group or high area consists 

of 114 districts/cities. 

A study (Verawaty, Muji Gunarto, Rolia Wahasusmiah, 2021) discussed the HDI of districts/cities in the 

province of South Sumatra Indonesia in 2014-2016. This study used multiple regression analysis. The study results 

showed that capital expenditure, general allocation funds, local own-source revenue, Revenue sharing funds affect 

HDI. 

 

METHOD 

Bagging Method 
Bootstrap aggregating invented by Breimanin 1996 (Xindong Wu, 2009). Bagging is a method applied to 

classification and regression. The purpose of this method is to reduce the variance of the independent variables to 
improve the quality of the predictions. Bootstrap is a random sampling method with resampling. The results 
obtained through the bootstrap process are followed by an aggregation process to make combined predictions 
(Otok et al., 2020). 

Bagging is an ensemble method using bootstrap sampling. The bagging method is used effectively to resolve 
the problem of unbalanced data classes (Issam H. Laradji, Mohammad Alshayeb, 2015). This method is used in 
the classification to separate training data into multiple new random sampling training data and build a new model 
based on training data (Wahono & Suryana, 2013). 

https://doi.org/10.33395/sinkron.xxx.xxx


 

 

Sinkron : Jurnal dan Penelitian Teknik Informatika 
Volume 6, Number 1, October 2021 

DOI : https://doi.org/ 10.33395/sinkron.v6i1.11173  

e-ISSN : 2541-2019 
 p-ISSN : 2541-044X 

 

 

*name of corresponding author 
  

 
This is an Creative Commons License This work is licensed under a Creative 
Commons Attribution-NonCommercial 4.0 International License. 102 

 

 

Bagging is using training data manipulation. Then, the training data is duplicated 𝑑 times sampling with 
replacement to produce  𝑑 new data. Furthermore, classifiers are built which can be regarded as bagged classifiers 
(Naomi Altman, 2017). Bagging uses sampling with replacement, the size of the data is the same as the original 
data, but the distribution of data from each bagging data is different, some data from the training data may appear 
several times or may not appear at all (Galar et al., 2012). Bagging is a stochastic machine learning approach that 
can eliminate variance from the classifier by producing a bootstrap ensemble to obtain better accuracy results 
(Windridge & Nagarajan, 2017). Bagging can reduce the variance of the dataset by sampling with replacement 
(Mordelet & Vert, 2013). 
 

Model Evaluation and Validation 

Classification analysis is expected to all data can be classified correctly. However, sometimes there are some 

errors in classification. Validation and evaluation are needed to assess whether the model is correct or not. To 

avoid errors following the application of the model to new unknown data, namely overfitting, it is necessary to 

assess the model. Dividing the dataset into training data and test data is an approach taken to avoid overfitting. 

Training data is used to build the model and test data to validate the built model (Mohammed et al., 2017). 

The matrix in Table 1  serves as a basis for comparison in identifying the optimal method based on the data 

that has been analyzed. Model validation can be done by comparing new built model size by using confusion 

matrix. (Luque et al., 2019).  The confusion matrix is used to present the performance of a classifier information. 

(Bramer, 2007). 

The confusion matrix is used in machine learning for the classification or determination of the behavior of 

the classification model (Hasnain et al., 2020). The confusion matrix is represented by rows and columns, where 

the row is the actual class and the column is the prediction class (Caelen, 2017). 

 

Tabel 1 

Confusion Matrix for Two Classes  

 Prediction Class 

Positive (P) Positive (P) 

Actual Class 

Positive (P) 
True Positive 

(TP) 

False Negative 

(FN) 

Negative (N) 
False Positive 

(FP) 

True Negative 

(TN)  

 

A good model has the highest number of true values and the fewest false values. Accuracy, sensitivity, and 

specificity were calculated using the numbers in Table 1. The definition of classification performance in Table 2 

can be seen in formula (1) for sensitivity (SNS), formula (2) for specificity (SPC), and formula (3) for accuracy 

(ACC). 

𝑆𝑁𝑆 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (1) 

 

𝑆𝑁𝑆 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (2) 

 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
 (3) 

 
The positive prediction class level is the positive actual class classified correctly. The negative prediction 

class level is the incorrectly classified positive actual class. The positive prediction class level is the negative actual 
class classified incorrectly. The negative prediction class level is the negative actual class classified incorrectly 
(Galar et al., 2012). 

 

Data Description 

This study uses secondary data obtained from CBS, namely HDI, life expectancy at birth, expected years of 

schooling, mean years of schooling, and adjusted real expenditure per capita in 2020 total of 514 districts/cities 

data in Indonesia. The dependent variable in this study is the HDI, which consists of low (low HDI and moderate 

HDI) which is categorized as 1 (one) and high (high HDI and very high HDI) is categorized with 2 (two). Life 

expectancy at birth (LE), expected years of schooling (EYS), mean years of schooling (MYS), and adjusted real 

expenditure per capita (Expenditures) as independent variables. The units of LE, EYS and MYS are in years while 

expenditures are in thousands of rupiah. Table 2 shows a description of the data. 
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Tabel 2 

Data Description 

Variable Definition Scale 

Y Human development index (HDI) Nominal 

𝑋1 Life expectancy at birth (LEB) Ratio 

𝑋2 Expected Years of Schooling (EYS) Ratio 

𝑋3 Mean Years of schooling (MYS) Ratio 

𝑋4 Adjusted real per capita expenditure (Expenditure) Ratio 

 

Stage of Analysis 

Figure 1 is the stage of analysis carried out in this study, namely collecting data. Determine variables, namely 

dependent variables, and independent variables. Perform descriptive analysis. Next, divide the data, namely 

training data by 80% (411 districts/cities in Indonesia) and testing data by 20% (103 districts/cities in Indonesia). 

Build a bagging model from training data. Determine the outcome of the prediction. Calculate the accuracy, 

sensitivity, and specificity of the test data. Drawing conclusions. 

                                                                           

 
 

Figure 1. Stages of Analysis 

 

 

 

 

RESULT 

Descriptive Analysis 

The results of the descriptive analysis in this study can be seen in Table 3. 
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Table 3 

Descriptive Analysis 

Variable N Minimum Maximum Average 

LEB 514 55.27 77.65 71.47 

EYS 514 3.61 17.79 12.98 

MYS 514 1.13 12.65 8.48 

Expenditure 514 3,975 23,575 11.013 

HDI 514 31.55 86.61 71.94 

 

Table 3 showed that there are 514 districts/cities in Indonesia on the variables of LEB, EYS, MYS, 

Expenditure, and HDI. Life expectancy at birth was lowest at 55.27 years, the highest at 77.65 years, and an 

average of 71.47 years. The shortest expected years of schooling were 3.61 years, the longest was 17.79 years, 

and the average was 12.98 years. The shortest mean years of schooling were 1.13 years, the longest was 12.65 

years, and the average was 8.48 years. The adjusted real expenditure per capita was at least Rp. 3,975,000,-, the 

maximum is Rp. 23,575,000,- and an average of Rp. 11,013,000,-. 

In 2020, Indonesia's HDI nationally was 71.94, increasing from 2019's HDI of 71.92. At the provincial level, 

the highest HDI in 2020 was achieved by DKI Jakarta province at 80.77, while the lowest was Papua province at 

60.44. (Badan Pusat Statistik, 2021b). At the District/City level, the average HDI in districts/cities across 

Indonesia was 71.94 with the highest HDI being 86.61 and the lowest being 31.55 (Badan Pusat Statistik, 2021a). 

 

Prediction Results, Accuracy, Sensitivity, and Specificity 

In this study, the bootstrap process was carried out 25 times (replication) to form a classification tree. Each 

replication was carried out on training data taken randomly with repetition. In the aggregating stage, predictions 

are made using test data on each classification tree that has been obtained by applying majority voting in classifying 

the data. The confusion matrix can be seen in Table 4.  

 

Table 4 

Confusion Matrix 

 Prediction Result Class 

Low Tall 

Actual 

Class 

Low 55 0 

Tall 8 40 

 

Table 4 showed that there was a misclassification in the high class. Eight observations should be in the high 

class but are classified in the low class. The values of sensitivity, specificity, and accuracy using the bagging 

method can be seen in Table 5. 

 

Table 5 

Value of Accuracy, Sensitivity, and Specificity 

Sensitivity (%) Specificity (%) Accuracy (%) 

100 83.33 92.23 

 

DISCUSSIONS 
The sensitivity value obtained is 100%. This value showed the sensitivity of the bagging model in 

detecting data in the positive class, namely the low class. Based on the sensitivity value, it is known that the 

proportion of data that is predicted to be labeled low from the actual data that is labeled low is 100%. 

The specificity value indicates the reliability of the bagging model in detecting data with a negative 

labeled category (high HDI category) correctly. Based on the analysis obtained a specificity of 83.33%. This matrix 

showed that the model is quite good at detecting high-class data. 

The accuracy value is the proportion of the number of data that is correctly predicted from all test data. The 

bagging model applied provides an accuracy of 92.23%, meaning that the model is very good at classifying data. 

Overall, a balanced accuracy of 91.67% was obtained so that it can be stated that the bagging model has a good 

performance in classifying HDI according to district/city in Indonesia. 
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CONCLUSION 

The results showed that the classification of HDI in Indonesia in 2020 based on district/city using the Bagging 

method obtained an accuracy value of 92.3%, sensitivity of 100%, and specificity of 83.33%. The bagging method 

is highly efficient for classifying the HDI with a balanced accuracy of 91.67%. The results of this classification 

can be used to predict HDI in the following year and determine development programs that must be implemented 

according to regional priorities based on the HDI category within the region. Suggestions for further research may 

be made by other methods that may produce a higher balanced accuracy. 
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