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Abstract: The E-Tilang application system has been widely used to support 

modern traffic, whereas protocol roads in big cities in Indonesia are already widely 

used. In principle, the plate number detection tool uses image recognition for 

detection. Image number plates on vehicles cannot always be read clearly, this is 

what causes the detection method to be a problem if the image plate number is 

further processed. The method for processing the plate number image uses deep 

learning and computer vision methods. For the condition of the image plate number 

that is not clear, the process of improving the image resolution from low resolution 

to high resolution is carried out, by applying Generative Adversarial Networks. 

This method consists of two main parts, namely Generate and Discriminator. 

Generate serves to generate an image and the Discriminator here is to check the 

image, can the image plate number be read or not? So that if the image plate 

number cannot be read, then the process is carried out again to the Generator until 

it is received by the Discriminator to be read. The process does not end here, the 

results will be carried out in the next process using Convolutional Neural 

Networks. Where the process is to detect the plate number image according to the 

classification of the plate number according to the region. The point is that an 

unclear image becomes clear by increasing the resolution from low resolution to 

high resolution so that it is easily read by the Convolutional Neural Network 

(CNN) algorithm so that the image is easily recognized by the CNN Algorithm. 

This becomes important in the CNN algorithm process because it gets the 

processed dataset. To produce a good model, preprocessing of the dataset is carried 

out. So that the model can detect the image well in terms of model performance. 

 

Keywords: Generative Adversarial Networks, Convolutional Neural Network, 

Image Plate Number Vehicle, Deep Learning, Computer Vision 

 

INTRODUCTION 

Currently, the use of image detection has been widely used in the dynamics of any field. Such as the use 

of existing detection images, such as the use of Deep Learning algorithms such as the Convolutional Neural 

Network (Yang et al., 2020). For example, many image detection systems, if you get an object that is not clear in 

the image, then the detection process will experience an error. Many of today's vehicle license plates do not work 

properly. Like the use of an opaque plate, the use of a plate is mounted obliquely or protrudes downwards. The 

purpose of using it varies, so that it is not seen by the police, transportation and others. 

If the installed camera is not able to detect the vehicle number plate image, then the results obtained will 

definitely experience errors. If the Convolutional Neural Network algorithm detects it, then feature extraction is 

carried out which will then be classified or regressed in detecting the correct vehicle number plates and there are 

vehicle plates that do not match the detection. 

CNN works by utilizing the convolution process by moving a convolution kernel (Jiang et al., 2021) or 

filter, which is a certain size into an image. After that the information is obtained, then perform a new 

representation of the multiplication results on each part of the image using convolution or filters. As figure 1, 

explains how the Convolutional Neural Network works. The purpose of CNN is that the spatial hierarchical 

structure of elements is studied using back propagation from several building blocks. Building blocks include 

convolutional layers, composite layers, and interconnected layers. CNN is also a mathematical construction, 

consisting of three types of layers. Convolutional layer, splice layer, and fully connected (Li et al., 2017) layer. 

https://doi.org/10.33395/sinkron.v7i2.11373
mailto:handri.santoso@pradita.ac.id


 

 

Sinkron : Jurnal dan Penelitian Teknik Informatika 
Volume 6, Number 2, April 2022 

DOI : https://doi.org/10.33395/sinkron.v7i2.11373  

e-ISSN : 2541-2019 
 p-ISSN : 2541-044X 

 

 

*name of corresponding author 
  

 
This is an Creative Commons License This work is licensed under a Creative 
Commons Attribution-NonCommercial 4.0 International License. 456 

 

 

The first two layers are convolution and merging layers for feature extraction (Kulkarni et al., 2021). The third 

layer is the connected layer mapping the extracted features. The last layer is classification. 

 

 
Fig. 1 How Convolutional Neural Networks work 

Source : Medium.com 

 

Here are the steps in Convolutional Neural Networks: 

1. The image is split and the image is overlapping. The input image is done by splitting as many as 77 small 

images. 

2. Input the image after solving, then input it into the Small Neural Network. Each small image represents a 

feature of the image. This is what makes CNN have the ability to recognize images or objects. All parts of each 

thumbnail, the same filter is used. This means that each part of the image will have the same multiplier, the 

neural network is referred to as weights sharing. 

3. Small images are then stored in an array. 

4. Downsampling, In step 3, the array is too large, done by reducing the size of the array and using 

downsampling. Max pooling is done by taking the largest pixel value in each pooling kernel. Reducing the 

number of parameters, the most important information of the section is still retrieved. 

5. Step 1 to step 4, large images into small arrays. The final neural network uses a fully connected 

(Mukhopadhyay et al., 2022)which is called the Classification step. So that this section can decide which object 

is appropriate or not. 

 

 
Fig. 2 Vehicle license plate that looks blurry 

Source : Google Image 

 

There is a problem with image detection if the existing image is blurry, this can interfere with the image 

detection process. Like Fig. 2, the image looks blurry. In this study, there are Research Questions: 

1. How to make a blurry image become a clear and clear image? 

2. Using deep learning algorithms to detect images? 

3. How is the performance of the deep learning algorithm model? 

The discussion in this study consists of an introduction related to research. The Literature Review section 

describes the previous studies in discussing issues related to low resolution and high resolution. The method 
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section will discuss the proposed method to be used in image detection or object detection. Results and 

Discussion section, displays the results of the proposed method proposed. The conclusion section is the 

conclusion of a series of activities in preprocessing problems and subsequent processes. 

 

LITERATURE REVIEW 

Several studies related to the Convolutional Neural Network (CNN) are as follows. 

 

Table 1. Previous research topics discussing CNN 

Author Topic Advantages Disadvantages 

(Suartika E. P 

et al., 2016) 

Image Classification 

Using Convolutional 

Neural Network (CNN) 

on Caltech 101. 

Discussion of classification using 

the CNN method, carried out in 

detail, explained about feature 

extraction and classification. 

Not discussing dataset 

preparation, which is 

really needed so that the 

dataset is clean and not 

overfitting. 

(Hendriyana 

& Yazid 

Hilman 

Maulana, 

2020) 

Identification of Types 

of Wood using 

Convolutional Neural 

Network with 

Mobilenet Architecture 

Discussion on wood identification 

using the CNN method, with the 

Mobilenet algorithm. Mobilenet 

includes using light computing but 

powerful running on mobile 

devices. 

Not discussing dataset 

preparation, which is 

really needed so that the 

dataset is clean and not 

overfitting. 

(Udayana et 

al., 2021) 

Detecting Excessive 

Daytime Sleepiness 

with CNN and 

Commercial Grade 

EEG 

Discussion using CNN method, 

Pre-processing using Data 

Normalization, Data Sampling, and 

Data Acquisition. 

The discussion does not 

use an image dataset. 

(Upadhyay et 

al., 2022) 

Coherent convolution 

neural network based 

retinal disease 

detection using optical 

coherence tomographic 

images 

CNN was used to explore eye 

disease, based on the synchronous 

network structure. This model 

consists of 5 layers, high accuracy 

is obtained on images with a size of 

64x64, the use of VGG16 on pre-

trained, with 16 layers. In the 

sequential model, Block-1 consists 

of two convolutions a layer with a 

filter size of 3X3 followed by a 

maxpooling layer. Block-2 

consisting of three layers of 

convolution with a filter size of 

3X3 followed by maxpooling. 

Not discussing dataset 

preparation, which is 

really needed so that the 

dataset is clean and not 

overfitting. 

(Sun et al., 

2021) 

MFBCNNC: 

Momentum factor 

biogeography 

convolutional neural 

network for COVID-19 

detection via chest X-

ray images 

Use method three convolutional 

neural networks (LeNet-5, VGG-

16, and ResNet-18) as the basic 

classification model for the 

detection of COVID-19, Normal, 

and Pneumonia chest X-ray images. 

The accuracy of LeNet-5, VGG-16, 

and ResNet-18 increased by 1.56%, 

1.48%, and 0.73% after using 

biogeography-based optimization to 

optimize the hyperparameters of the 

model. 

Not discussing dataset 

preparation, which is 

really needed so that the 

dataset is clean and not 

overfitting 

(Muralidharan 

et al., 2022) 

Detection of COVID19 

from X-ray images 

using multiscale Deep 

Convolutional Neural 

Network 

Detection of covid-19 is carried out 

using X-Ray which is directly 

processed using the Convolutional 

Neural Network.. 

Does not discuss dataset 

preparation. 

(Matsunobu et Cloud detection using This work evaluates the Not discussing dataset 

https://doi.org/10.33395/sinkron.v7i2.11373


 

 

Sinkron : Jurnal dan Penelitian Teknik Informatika 
Volume 6, Number 2, April 2022 

DOI : https://doi.org/10.33395/sinkron.v7i2.11373  

e-ISSN : 2541-2019 
 p-ISSN : 2541-044X 

 

 

*name of corresponding author 
  

 
This is an Creative Commons License This work is licensed under a Creative 
Commons Attribution-NonCommercial 4.0 International License. 458 

 

 

al., 2021) convolutional neural 

networks on remote 

sensing 

images 

performance of a convolutional 

neural network (CNN)-based cloud 

mask (CCM) at 12 geographically 

and climatically diverse locations 

across the continental U.S. 

(CONUS). Performance is largely 

characterized by the Mathews 

correlation coefficient (MCC) 

score. 

preparation, which is 

really needed so that the 

dataset is clean and not 

overfitting 

 

This state-of-the-art research uses image preprocessing as an image cleaning dataset (such as image 

blur, images too small). The image dataset will be improved so that all datasets will become very visually clear. 

Bad dataset image will affect during training and testing.   

 

METHOD 

Image pre-processing is not limited to, resizing, orientation and color correction. Manipulations applied to 

images create different versions of similar content to expose the model to a wider training set. Random changes 

in the rotation, brightness, or scale of the input image require the model to consider what the subject of the image 

looks like in various situations. The image augmentation process is only applied to the training data. Thus, the 

transformation can be an augmentation in some situations. The image augmentation process can increase the 

number of datasets for training, thus producing a good dataset when creating a training model. 

 

 
Fig 3. Proposed method for resolving blurry images. 

Source : researcher property 

 

Often in processing image datasets do not pay attention to the dataset, for better or for worse. In Machine 

Learning processing, if the dataset is bad, it will produce a bad model as well. To overcome this problem, 

suggestions for improving or augmenting images need to be carried out on the dataset, so that the dataset will 

produce a good model if the image dataset used is good. This study proposes to clean the image dataset, and 

augmented the image is done so that the image dataset becomes better. The proposed augmented image uses 

image preprocessing with the Super-Resolution Generative Adversarial Networks (SRGAN) (Moran et al., 

2021), (Moran et al., 2021), (Bode et al., 2021) method. Basically, SRGAN is divided into Generator as an 

image producer, while Discriminator as a differentiator between the generated image and the original image. 

Therefore, it is necessary to conduct training so that the Discriminator is able to distinguish the image from the 

generator from the real image dataset. 

 

Loss Function  

The loss function (Abu-Srhan et al., 2022), in a neural network calculates the difference between the expected 

result and the real result. Patch sketches of the natural image of the manifold (red color) and super-finished patch 

were obtained with MSE (blue color) and GAN (orange color). The solution with MSE (Y. S. Liu et al., 2021) 

looks too smooth because it is a pixel-wise average of the possible solutions in the pixel space, while the GAN 

https://doi.org/10.33395/sinkron.v7i2.11373
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method performs reconstruction towards a natural image manifold resulting in a more convincing perceptual 

solution. As in Fig 4. 

 

 
Fig. 4 Illustration of Natural Image Manifold, MSE-based Solution, and GAN-based Solution 

Source : (Qi et al., 2018) 

 

Pixel-wise loss function to handle inherent uncertainty and perform high-frequency lost recovery. The detail of 

texture is that minimizing MSE encourages finding the pixel average of a reasonable solution. Usually, the pixels 

are too fine and have poor perceptual quality (Qi et al., 2018). 

 

Generator Network 

Skip connection is a standard module in the convolution architecture of neural networks (Lin et al., 2021). The 

use of skip connections provides an alternative path for gradients with back propagation. Experimentally 

validated and additional paths are useful for model convergence. Pass connections in deep architecture, 

bypassing multiple layers in the neural network thereby providing output from one layer as input to the next. So 

it can speed up the process. Generator Network works as follows: Input Low Resolution (LR) performed Conv 

and Parametric ReLU, with k9n64s1 (Kernel size 9, feature maps 64, stride 1). B residual blocks consist of 

k3n64s1, k3n64s1 is the result of Conv, BatchNorm, Parametric ReLU. Skip connection 4 times. Next k3n64s1 

results from Conv, BatchNorm, Elementwise Sum. k3n256s1 results from Conv, PixelShuffler x2, ReLU, 

continue to process until k9n3s1. This results in an image that is 4x larger in size. This process uses 

Convolutional Neural Networks with model VGG16 (16 layers). All Generator Network processes as in Fig. 5. 

 

 
Fig 5. Image dengan Super Resolution Generative Adversarial Network. 

Source : (Y. Liu et al., 2019) 

 

Discriminator Network 

https://doi.org/10.33395/sinkron.v7i2.11373


 

 

Sinkron : Jurnal dan Penelitian Teknik Informatika 
Volume 6, Number 2, April 2022 

DOI : https://doi.org/10.33395/sinkron.v7i2.11373  

e-ISSN : 2541-2019 
 p-ISSN : 2541-044X 

 

 

*name of corresponding author 
  

 
This is an Creative Commons License This work is licensed under a Creative 
Commons Attribution-NonCommercial 4.0 International License. 460 

 

 

Input from Generator and input from the real dataset, then Conv process, Leaky ReLU (Y. Liu et al., 2019)is 

performed, resulting in k3n64s1 (Kernel Size 3, feature map 64, stride 1). Then the Conv, BatchNorm, and 

Leaky ReLU processes generate k3n64s2. The feature extraction process Conv, BatchNorm, LeakyReLU 

starting from (Conv, BatchNorm, LeakyReLU) k3n128s1, (Conv, BatchNorm, LeakyReLU) k3n128s2, (Conv, 

BatchNorm, LeakyReLU) k3n256s1, (Conv, BatchNorm, LeakyReLU) k3n256s2, (Conv, BatchNorm, 

LeakyReLU) k3n512s1, (Conv, BatchNorm, LeakyReLU) k3n512s2. The following processes are classified, 

such as Dense (1024), LeakyReLU, Dense (1), and sigmoid. The result is a Super Resolution and High-

Resolution image. 

 

RESULT 

Generative Adversarial Networks are used to correct blurry, small, and unclear images so that the image      

improvement process is carried out. This process is known as a Super Resolution image. The results of the devel

opment of the Generative Adversarial Networks model for the Generator module are shown in table 1. 
 

Table 1. Model: "Generator" 
___________________________________________________________________________________________________ 

Layer (type)                                   Output Shape                             Param #         

======================================================================================== 

input_1 (InputLayer)                           (None, None, None, 3)]                     0               

____________________________________________________________________________________________________ 

lambda (Lambda)                                (None, None, None, 3)                        0               

____________________________________________________________________________________________________ 

conv2d_block (Conv2DBlock)                     (None, None, None, 64)                   1856            

____________________________________________________________________________________________________ 

conv2d_block_1 (Conv2DBlock)                 (None, None, None, 64)                   4224            

____________________________________________________________________________________________________ 

rrd_block (RRDBlock)                           (None, None, None, 64)                   251072          

____________________________________________________________________________________________________ 

rrd_block_1 (RRDBlock)                         (None, None, None, 64)                   251072          

____________________________________________________________________________________________________ 

rrd_block_2 (RRDBlock)                         (None, None, None, 64)                   251072          

____________________________________________________________________________________________________ 

rrd_block_3 (RRDBlock)                         (None, None, None, 64)                  251072          

____________________________________________________________________________________________________ 

pixel_shuffle_up_sampling (PixelShuffleUpSam  (None, None, None, 64)                   147776          

____________________________________________________________________________________________________ 

pixel_shuffle_up_sampling_1 (PixelShuffleUpS  (None, None, None, 64)                   147776          

____________________________________________________________________________________________________ 

conv2d_block_40 (Conv2DBlock)                 (None, None, None, 64)                   36992           

____________________________________________________________________________________________________ 

conv2d_block_41 (Conv2DBlock)                 (None, None, None, 3)                    1731            

____________________________________________________________________________________________________ 

activation (Activation)                        (None, None, None, 3)                       0               

____________________________________________________________________________________________________ 

lambda_3 (Lambda)                              (None, None, None, 3)                       0               

========================================================================================= 

Total params: 1,344,643 

Trainable params: 1,341,571 

Non-trainable params: 3,072 

 

Discriminator Network 

This model is to compare the results of the model generator with the real dataset, later the results will distinguish 

between the generator and real data. 

 

Table 2. Model: "Discriminator" 
____________________________________________________________________________________________________ 

Layer (type)                                   Output Shape                             Param #         

========================================================================================= 

input_2 (InputLayer)                          (None, 128, 128, 3)]                    0               

____________________________________________________________________________________________________ 

lambda_4 (Lambda)                              (None, 128, 128, 3)                      0               

____________________________________________________________________________________________________ 

conv2d_42 (Conv2D)                             (None, 128, 128, 32)                     896             

____________________________________________________________________________________________________ 

leaky_re_lu (LeakyReLU)                        (None, 128, 128, 32)                     0               

____________________________________________________________________________________________________ 

conv2d_43 (Conv2D)                             (None, 64, 64, 32)                       9248            
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____________________________________________________________________________________________________ 

batch_normalization_36 (BatchNormalization)   (None, 64, 64, 32)                       128             

____________________________________________________________________________________________________ 

leaky_re_lu_1 (LeakyReLU)                      (None, 64, 64, 32)                       0               

____________________________________________________________________________________________________ 

conv2d_44 (Conv2D)                             (None, 64, 64, 64)                       18496           

____________________________________________________________________________________________________ 

batch_normalization_37 (BatchNormalization)   (None, 64, 64, 64)                      256             

____________________________________________________________________________________________________ 

leaky_re_lu_2 (LeakyReLU)                      (None, 64, 64, 64)                       0               

____________________________________________________________________________________________________ 

conv2d_45 (Conv2D)                             (None, 32, 32, 64)                       36928           

____________________________________________________________________________________________________ 

batch_normalization_38 (BatchNormalization)   (None, 32, 32, 64)                       256             

____________________________________________________________________________________________________ 

leaky_re_lu_3 (LeakyReLU)                      (None, 32, 32, 64)                       0               

____________________________________________________________________________________________________ 

conv2d_46 (Conv2D)                             (None, 32, 32, 128)                      73856           

____________________________________________________________________________________________________ 

batch_normalization_39 (BatchNormalization)   (None, 32, 32, 128)                      512             

____________________________________________________________________________________________________ 

leaky_re_lu_4 (LeakyReLU)                      (None, 32, 32, 128)                      0               

____________________________________________________________________________________________________ 

conv2d_47 (Conv2D)                             (None, 16, 16, 128)                      147584          

____________________________________________________________________________________________________ 

batch_normalization_40 (BatchNormalization)   (None, 16, 16, 128)                      512             

____________________________________________________________________________________________________ 

leaky_re_lu_5 (LeakyReLU)                      (None, 16, 16, 128)                      0               

____________________________________________________________________________________________________ 

conv2d_48 (Conv2D)                             (None, 16, 16, 256)                      295168          

____________________________________________________________________________________________________ 

batch_normalization_41 (BatchNormalization)   (None, 16, 16, 256)                      1024            

____________________________________________________________________________________________________ 

leaky_re_lu_6 (LeakyReLU)                      (None, 16, 16, 256)                     0               

____________________________________________________________________________________________________ 

conv2d_49 (Conv2D)                             (None, 8, 8, 256)                        590080          

____________________________________________________________________________________________________ 

batch_normalization_42 (BatchNormalization)   (None, 8, 8, 256)                        1024            

____________________________________________________________________________________________________ 

leaky_re_lu_7 (LeakyReLU)                      (None, 8, 8, 256)                        0               

____________________________________________________________________________________________________ 

flatten (Flatten)                              (None, 16384)                            0               

____________________________________________________________________________________________________ 

dense (Dense)                                  (None, 1024)                             16778240        

____________________________________________________________________________________________________ 

leaky_re_lu_8 (LeakyReLU)                      (None, 1024)                            0               

____________________________________________________________________________________________________ 

dense_1 (Dense)                                (None, 1024)                             1049600         

____________________________________________________________________________________________________ 

leaky_re_lu_9 (LeakyReLU)                      (None, 1024)                            0               

____________________________________________________________________________________________________ 

dense_2 (Dense)                                (None, 1)                                1025            

========================================================================================= 

Total params: 19,004,833 

Trainable params: 19,002,977 

Non-trainable params: 1,856 

 

 
Fig. 6 Result Super Resoultion Generative Adversarial Network 

Source : Google Image 
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Fig. 7 Performance Convolutional Neural Network 

Source : researcher property 

 

The results of the training process on classification using CNN with the VGG16 model can achieve Loss 

accuracy: 0.65% and Accuracy model 85.90%. The results of the training process with VGG19 can achieve Loss 

accuracy: 0.65% and Accuracy model reaches 91.5%. From the experiment by comparing the two Convolutional 

Neural Network (CNN) methods, using VGG19 can produce an increased accuracy score.  

 

DISCUSSIONS 

Based on a report from Keras.io, the accuracy range of VGG16 and VGG19 is in the 71% - 90.1% range. 

VGG16's accuracy is around 85.9%, which means it's still pretty good. While the accuracy of VGG19 is around 

91.5%, it means that there is an increase of 1.4% higher than the standard range of Keras.io. This means that 

there is an increase in accuracy by performing augmented image datasets by preprocessing Super Resolution 

Generative Adversarial Networks. 

 

CONCLUSION 

Based on experiments on Super-Resolution Generative Adversarial Networks research as preprocessing in 

Image Supervise Learning using the VGG16 and VGG19 Classification Algorithms, the results have improved 

accuracy. The accuracy of VGG19 reaches 91.5% accuracy which is higher than the standard of hard.io 

accuracy. This proves that the hypothesis for image preprocessing will improve the accuracy performance of the 

Image Supervise algorithm with VGG19. Proof of correct accuracy by conducting an experiment with 

classification with VGG19. 
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