

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 6, Number 2, April 2022

DOI : https://doi.org/10.33395/sinkron.v7i2.11373

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 455

Super Resolution Generative Adversarial

Networks for Image Supervise Learning

Mariska Lupitha1)*, Handri Santoso2),
1)2) Universitas Pradita

1)mariska.lupitha@student.pradita.ac.id, 2)handri.santoso@pradita.ac.id

Submitted : Apr 9, 2022 | Accepted : Apr 10, 2022 | Published : Apr 11, 2022

Abstract: The E-Tilang application system has been widely used to support

modern traffic, whereas protocol roads in big cities in Indonesia are already widely

used. In principle, the plate number detection tool uses image recognition for

detection. Image number plates on vehicles cannot always be read clearly, this is

what causes the detection method to be a problem if the image plate number is

further processed. The method for processing the plate number image uses deep

learning and computer vision methods. For the condition of the image plate number

that is not clear, the process of improving the image resolution from low resolution

to high resolution is carried out, by applying Generative Adversarial Networks.

This method consists of two main parts, namely Generate and Discriminator.

Generate serves to generate an image and the Discriminator here is to check the

image, can the image plate number be read or not? So that if the image plate

number cannot be read, then the process is carried out again to the Generator until

it is received by the Discriminator to be read. The process does not end here, the

results will be carried out in the next process using Convolutional Neural

Networks. Where the process is to detect the plate number image according to the

classification of the plate number according to the region. The point is that an

unclear image becomes clear by increasing the resolution from low resolution to

high resolution so that it is easily read by the Convolutional Neural Network

(CNN) algorithm so that the image is easily recognized by the CNN Algorithm.

This becomes important in the CNN algorithm process because it gets the

processed dataset. To produce a good model, preprocessing of the dataset is carried

out. So that the model can detect the image well in terms of model performance.

Keywords: Generative Adversarial Networks, Convolutional Neural Network,

Image Plate Number Vehicle, Deep Learning, Computer Vision

INTRODUCTION

Currently, the use of image detection has been widely used in the dynamics of any field. Such as the use

of existing detection images, such as the use of Deep Learning algorithms such as the Convolutional Neural

Network (Yang et al., 2020). For example, many image detection systems, if you get an object that is not clear in

the image, then the detection process will experience an error. Many of today's vehicle license plates do not work

properly. Like the use of an opaque plate, the use of a plate is mounted obliquely or protrudes downwards. The

purpose of using it varies, so that it is not seen by the police, transportation and others.

If the installed camera is not able to detect the vehicle number plate image, then the results obtained will

definitely experience errors. If the Convolutional Neural Network algorithm detects it, then feature extraction is

carried out which will then be classified or regressed in detecting the correct vehicle number plates and there are

vehicle plates that do not match the detection.

CNN works by utilizing the convolution process by moving a convolution kernel (Jiang et al., 2021) or

filter, which is a certain size into an image. After that the information is obtained, then perform a new

representation of the multiplication results on each part of the image using convolution or filters. As figure 1,

explains how the Convolutional Neural Network works. The purpose of CNN is that the spatial hierarchical

structure of elements is studied using back propagation from several building blocks. Building blocks include

convolutional layers, composite layers, and interconnected layers. CNN is also a mathematical construction,

consisting of three types of layers. Convolutional layer, splice layer, and fully connected (Li et al., 2017) layer.

https://doi.org/10.33395/sinkron.v7i2.11373
mailto:handri.santoso@pradita.ac.id

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 6, Number 2, April 2022

DOI : https://doi.org/10.33395/sinkron.v7i2.11373

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 456

The first two layers are convolution and merging layers for feature extraction (Kulkarni et al., 2021). The third

layer is the connected layer mapping the extracted features. The last layer is classification.

Fig. 1 How Convolutional Neural Networks work

Source : Medium.com

Here are the steps in Convolutional Neural Networks:

1. The image is split and the image is overlapping. The input image is done by splitting as many as 77 small

images.

2. Input the image after solving, then input it into the Small Neural Network. Each small image represents a

feature of the image. This is what makes CNN have the ability to recognize images or objects. All parts of each

thumbnail, the same filter is used. This means that each part of the image will have the same multiplier, the

neural network is referred to as weights sharing.

3. Small images are then stored in an array.

4. Downsampling, In step 3, the array is too large, done by reducing the size of the array and using

downsampling. Max pooling is done by taking the largest pixel value in each pooling kernel. Reducing the

number of parameters, the most important information of the section is still retrieved.

5. Step 1 to step 4, large images into small arrays. The final neural network uses a fully connected

(Mukhopadhyay et al., 2022)which is called the Classification step. So that this section can decide which object

is appropriate or not.

Fig. 2 Vehicle license plate that looks blurry

Source : Google Image

There is a problem with image detection if the existing image is blurry, this can interfere with the image

detection process. Like Fig. 2, the image looks blurry. In this study, there are Research Questions:

1. How to make a blurry image become a clear and clear image?

2. Using deep learning algorithms to detect images?

3. How is the performance of the deep learning algorithm model?

The discussion in this study consists of an introduction related to research. The Literature Review section

describes the previous studies in discussing issues related to low resolution and high resolution. The method

https://doi.org/10.33395/sinkron.v7i2.11373

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 6, Number 2, April 2022

DOI : https://doi.org/10.33395/sinkron.v7i2.11373

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 457

section will discuss the proposed method to be used in image detection or object detection. Results and

Discussion section, displays the results of the proposed method proposed. The conclusion section is the

conclusion of a series of activities in preprocessing problems and subsequent processes.

LITERATURE REVIEW

Several studies related to the Convolutional Neural Network (CNN) are as follows.

Table 1. Previous research topics discussing CNN

Author Topic Advantages Disadvantages

(Suartika E. P

et al., 2016)

Image Classification

Using Convolutional

Neural Network (CNN)

on Caltech 101.

Discussion of classification using

the CNN method, carried out in

detail, explained about feature

extraction and classification.

Not discussing dataset

preparation, which is

really needed so that the

dataset is clean and not

overfitting.

(Hendriyana

& Yazid

Hilman

Maulana,

2020)

Identification of Types

of Wood using

Convolutional Neural

Network with

Mobilenet Architecture

Discussion on wood identification

using the CNN method, with the

Mobilenet algorithm. Mobilenet

includes using light computing but

powerful running on mobile

devices.

Not discussing dataset

preparation, which is

really needed so that the

dataset is clean and not

overfitting.

(Udayana et

al., 2021)

Detecting Excessive

Daytime Sleepiness

with CNN and

Commercial Grade

EEG

Discussion using CNN method,

Pre-processing using Data

Normalization, Data Sampling, and

Data Acquisition.

The discussion does not

use an image dataset.

(Upadhyay et

al., 2022)

Coherent convolution

neural network based

retinal disease

detection using optical

coherence tomographic

images

CNN was used to explore eye

disease, based on the synchronous

network structure. This model

consists of 5 layers, high accuracy

is obtained on images with a size of

64x64, the use of VGG16 on pre-

trained, with 16 layers. In the

sequential model, Block-1 consists

of two convolutions a layer with a

filter size of 3X3 followed by a

maxpooling layer. Block-2

consisting of three layers of

convolution with a filter size of

3X3 followed by maxpooling.

Not discussing dataset

preparation, which is

really needed so that the

dataset is clean and not

overfitting.

(Sun et al.,

2021)

MFBCNNC:

Momentum factor

biogeography

convolutional neural

network for COVID-19

detection via chest X-

ray images

Use method three convolutional

neural networks (LeNet-5, VGG-

16, and ResNet-18) as the basic

classification model for the

detection of COVID-19, Normal,

and Pneumonia chest X-ray images.

The accuracy of LeNet-5, VGG-16,

and ResNet-18 increased by 1.56%,

1.48%, and 0.73% after using

biogeography-based optimization to

optimize the hyperparameters of the

model.

Not discussing dataset

preparation, which is

really needed so that the

dataset is clean and not

overfitting

(Muralidharan

et al., 2022)

Detection of COVID19

from X-ray images

using multiscale Deep

Convolutional Neural

Network

Detection of covid-19 is carried out

using X-Ray which is directly

processed using the Convolutional

Neural Network..

Does not discuss dataset

preparation.

(Matsunobu et Cloud detection using This work evaluates the Not discussing dataset

https://doi.org/10.33395/sinkron.v7i2.11373

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 6, Number 2, April 2022

DOI : https://doi.org/10.33395/sinkron.v7i2.11373

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 458

al., 2021) convolutional neural

networks on remote

sensing

images

performance of a convolutional

neural network (CNN)-based cloud

mask (CCM) at 12 geographically

and climatically diverse locations

across the continental U.S.

(CONUS). Performance is largely

characterized by the Mathews

correlation coefficient (MCC)

score.

preparation, which is

really needed so that the

dataset is clean and not

overfitting

This state-of-the-art research uses image preprocessing as an image cleaning dataset (such as image

blur, images too small). The image dataset will be improved so that all datasets will become very visually clear.

Bad dataset image will affect during training and testing.

METHOD

Image pre-processing is not limited to, resizing, orientation and color correction. Manipulations applied to

images create different versions of similar content to expose the model to a wider training set. Random changes

in the rotation, brightness, or scale of the input image require the model to consider what the subject of the image

looks like in various situations. The image augmentation process is only applied to the training data. Thus, the

transformation can be an augmentation in some situations. The image augmentation process can increase the

number of datasets for training, thus producing a good dataset when creating a training model.

Fig 3. Proposed method for resolving blurry images.

Source : researcher property

Often in processing image datasets do not pay attention to the dataset, for better or for worse. In Machine

Learning processing, if the dataset is bad, it will produce a bad model as well. To overcome this problem,

suggestions for improving or augmenting images need to be carried out on the dataset, so that the dataset will

produce a good model if the image dataset used is good. This study proposes to clean the image dataset, and

augmented the image is done so that the image dataset becomes better. The proposed augmented image uses

image preprocessing with the Super-Resolution Generative Adversarial Networks (SRGAN) (Moran et al.,

2021), (Moran et al., 2021), (Bode et al., 2021) method. Basically, SRGAN is divided into Generator as an

image producer, while Discriminator as a differentiator between the generated image and the original image.

Therefore, it is necessary to conduct training so that the Discriminator is able to distinguish the image from the

generator from the real image dataset.

Loss Function

The loss function (Abu-Srhan et al., 2022), in a neural network calculates the difference between the expected

result and the real result. Patch sketches of the natural image of the manifold (red color) and super-finished patch

were obtained with MSE (blue color) and GAN (orange color). The solution with MSE (Y. S. Liu et al., 2021)

looks too smooth because it is a pixel-wise average of the possible solutions in the pixel space, while the GAN

https://doi.org/10.33395/sinkron.v7i2.11373

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 6, Number 2, April 2022

DOI : https://doi.org/10.33395/sinkron.v7i2.11373

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 459

method performs reconstruction towards a natural image manifold resulting in a more convincing perceptual

solution. As in Fig 4.

Fig. 4 Illustration of Natural Image Manifold, MSE-based Solution, and GAN-based Solution

Source : (Qi et al., 2018)

Pixel-wise loss function to handle inherent uncertainty and perform high-frequency lost recovery. The detail of

texture is that minimizing MSE encourages finding the pixel average of a reasonable solution. Usually, the pixels

are too fine and have poor perceptual quality (Qi et al., 2018).

Generator Network

Skip connection is a standard module in the convolution architecture of neural networks (Lin et al., 2021). The

use of skip connections provides an alternative path for gradients with back propagation. Experimentally

validated and additional paths are useful for model convergence. Pass connections in deep architecture,

bypassing multiple layers in the neural network thereby providing output from one layer as input to the next. So

it can speed up the process. Generator Network works as follows: Input Low Resolution (LR) performed Conv

and Parametric ReLU, with k9n64s1 (Kernel size 9, feature maps 64, stride 1). B residual blocks consist of

k3n64s1, k3n64s1 is the result of Conv, BatchNorm, Parametric ReLU. Skip connection 4 times. Next k3n64s1

results from Conv, BatchNorm, Elementwise Sum. k3n256s1 results from Conv, PixelShuffler x2, ReLU,

continue to process until k9n3s1. This results in an image that is 4x larger in size. This process uses

Convolutional Neural Networks with model VGG16 (16 layers). All Generator Network processes as in Fig. 5.

Fig 5. Image dengan Super Resolution Generative Adversarial Network.

Source : (Y. Liu et al., 2019)

Discriminator Network

https://doi.org/10.33395/sinkron.v7i2.11373

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 6, Number 2, April 2022

DOI : https://doi.org/10.33395/sinkron.v7i2.11373

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 460

Input from Generator and input from the real dataset, then Conv process, Leaky ReLU (Y. Liu et al., 2019)is

performed, resulting in k3n64s1 (Kernel Size 3, feature map 64, stride 1). Then the Conv, BatchNorm, and

Leaky ReLU processes generate k3n64s2. The feature extraction process Conv, BatchNorm, LeakyReLU

starting from (Conv, BatchNorm, LeakyReLU) k3n128s1, (Conv, BatchNorm, LeakyReLU) k3n128s2, (Conv,

BatchNorm, LeakyReLU) k3n256s1, (Conv, BatchNorm, LeakyReLU) k3n256s2, (Conv, BatchNorm,

LeakyReLU) k3n512s1, (Conv, BatchNorm, LeakyReLU) k3n512s2. The following processes are classified,

such as Dense (1024), LeakyReLU, Dense (1), and sigmoid. The result is a Super Resolution and High-

Resolution image.

RESULT

Generative Adversarial Networks are used to correct blurry, small, and unclear images so that the image

improvement process is carried out. This process is known as a Super Resolution image. The results of the devel

opment of the Generative Adversarial Networks model for the Generator module are shown in table 1.

Table 1. Model: "Generator"

Layer (type) Output Shape Param #

==

input_1 (InputLayer) (None, None, None, 3)] 0

__

lambda (Lambda) (None, None, None, 3) 0

__

conv2d_block (Conv2DBlock) (None, None, None, 64) 1856

__

conv2d_block_1 (Conv2DBlock) (None, None, None, 64) 4224

__

rrd_block (RRDBlock) (None, None, None, 64) 251072

__

rrd_block_1 (RRDBlock) (None, None, None, 64) 251072

__

rrd_block_2 (RRDBlock) (None, None, None, 64) 251072

__

rrd_block_3 (RRDBlock) (None, None, None, 64) 251072

__

pixel_shuffle_up_sampling (PixelShuffleUpSam (None, None, None, 64) 147776

__

pixel_shuffle_up_sampling_1 (PixelShuffleUpS (None, None, None, 64) 147776

__

conv2d_block_40 (Conv2DBlock) (None, None, None, 64) 36992

__

conv2d_block_41 (Conv2DBlock) (None, None, None, 3) 1731

__

activation (Activation) (None, None, None, 3) 0

__

lambda_3 (Lambda) (None, None, None, 3) 0

===

Total params: 1,344,643

Trainable params: 1,341,571

Non-trainable params: 3,072

Discriminator Network

This model is to compare the results of the model generator with the real dataset, later the results will distinguish

between the generator and real data.

Table 2. Model: "Discriminator"
__

Layer (type) Output Shape Param #

===

input_2 (InputLayer) (None, 128, 128, 3)] 0

__

lambda_4 (Lambda) (None, 128, 128, 3) 0

__

conv2d_42 (Conv2D) (None, 128, 128, 32) 896

__

leaky_re_lu (LeakyReLU) (None, 128, 128, 32) 0

__

conv2d_43 (Conv2D) (None, 64, 64, 32) 9248

https://doi.org/10.33395/sinkron.v7i2.11373

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 6, Number 2, April 2022

DOI : https://doi.org/10.33395/sinkron.v7i2.11373

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 461

__

batch_normalization_36 (BatchNormalization) (None, 64, 64, 32) 128

__

leaky_re_lu_1 (LeakyReLU) (None, 64, 64, 32) 0

__

conv2d_44 (Conv2D) (None, 64, 64, 64) 18496

__

batch_normalization_37 (BatchNormalization) (None, 64, 64, 64) 256

__

leaky_re_lu_2 (LeakyReLU) (None, 64, 64, 64) 0

__

conv2d_45 (Conv2D) (None, 32, 32, 64) 36928

__

batch_normalization_38 (BatchNormalization) (None, 32, 32, 64) 256

__

leaky_re_lu_3 (LeakyReLU) (None, 32, 32, 64) 0

__

conv2d_46 (Conv2D) (None, 32, 32, 128) 73856

__

batch_normalization_39 (BatchNormalization) (None, 32, 32, 128) 512

__

leaky_re_lu_4 (LeakyReLU) (None, 32, 32, 128) 0

__

conv2d_47 (Conv2D) (None, 16, 16, 128) 147584

__

batch_normalization_40 (BatchNormalization) (None, 16, 16, 128) 512

__

leaky_re_lu_5 (LeakyReLU) (None, 16, 16, 128) 0

__

conv2d_48 (Conv2D) (None, 16, 16, 256) 295168

__

batch_normalization_41 (BatchNormalization) (None, 16, 16, 256) 1024

__

leaky_re_lu_6 (LeakyReLU) (None, 16, 16, 256) 0

__

conv2d_49 (Conv2D) (None, 8, 8, 256) 590080

__

batch_normalization_42 (BatchNormalization) (None, 8, 8, 256) 1024

__

leaky_re_lu_7 (LeakyReLU) (None, 8, 8, 256) 0

__

flatten (Flatten) (None, 16384) 0

__

dense (Dense) (None, 1024) 16778240

__

leaky_re_lu_8 (LeakyReLU) (None, 1024) 0

__

dense_1 (Dense) (None, 1024) 1049600

__

leaky_re_lu_9 (LeakyReLU) (None, 1024) 0

__

dense_2 (Dense) (None, 1) 1025

===

Total params: 19,004,833

Trainable params: 19,002,977

Non-trainable params: 1,856

Fig. 6 Result Super Resoultion Generative Adversarial Network

Source : Google Image

https://doi.org/10.33395/sinkron.v7i2.11373

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 6, Number 2, April 2022

DOI : https://doi.org/10.33395/sinkron.v7i2.11373

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 462

Fig. 7 Performance Convolutional Neural Network

Source : researcher property

The results of the training process on classification using CNN with the VGG16 model can achieve Loss

accuracy: 0.65% and Accuracy model 85.90%. The results of the training process with VGG19 can achieve Loss

accuracy: 0.65% and Accuracy model reaches 91.5%. From the experiment by comparing the two Convolutional

Neural Network (CNN) methods, using VGG19 can produce an increased accuracy score.

DISCUSSIONS

Based on a report from Keras.io, the accuracy range of VGG16 and VGG19 is in the 71% - 90.1% range.

VGG16's accuracy is around 85.9%, which means it's still pretty good. While the accuracy of VGG19 is around

91.5%, it means that there is an increase of 1.4% higher than the standard range of Keras.io. This means that

there is an increase in accuracy by performing augmented image datasets by preprocessing Super Resolution

Generative Adversarial Networks.

CONCLUSION

Based on experiments on Super-Resolution Generative Adversarial Networks research as preprocessing in

Image Supervise Learning using the VGG16 and VGG19 Classification Algorithms, the results have improved

accuracy. The accuracy of VGG19 reaches 91.5% accuracy which is higher than the standard of hard.io

accuracy. This proves that the hypothesis for image preprocessing will improve the accuracy performance of the

Image Supervise algorithm with VGG19. Proof of correct accuracy by conducting an experiment with

classification with VGG19.

REFERENCES

Abu-Srhan, A., Abushariah, M. A. M., & Al-Kadi, O. S. (2022). The effect of loss function on conditional

generative adversarial networks. Journal of King Saud University - Computer and Information Sciences,

xxxx. https://doi.org/10.1016/j.jksuci.2022.02.018

Bode, M., Gauding, M., Lian, Z., Denker, D., Davidovic, M., Kleinheinz, K., Jitsev, J., & Pitsch, H. (2021).

Using physics-informed enhanced super-resolution generative adversarial networks for subfilter modeling

in turbulent reactive flows. Proceedings of the Combustion Institute, 38(2), 2617–2625.

https://doi.org/10.1016/j.proci.2020.06.022

Hendriyana, H., & Yazid Hilman Maulana. (2020). Identification of Types of Wood using Convolutional Neural

Network with Mobilenet Architecture. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(1),

70–76. https://doi.org/10.29207/resti.v4i1.1445

Jiang, M., Zhi, M., Wei, L., Yang, X., Zhang, J., Li, Y., Wang, P., Huang, J., & Yang, G. (2021). FA-GAN:

Fused attentive generative adversarial networks for MRI image super-resolution. Computerized Medical

Imaging and Graphics, 92(April), 101969. https://doi.org/10.1016/j.compmedimag.2021.101969

Kulkarni, U., Meena, S. M., Gurlahosur, S. V., & Bhogar, G. (2021). Quantization Friendly MobileNet (QF-

MobileNet) Architecture for Vision Based Applications on Embedded Platforms. Neural Networks, 136,

https://doi.org/10.33395/sinkron.v7i2.11373

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 6, Number 2, April 2022

DOI : https://doi.org/10.33395/sinkron.v7i2.11373

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 463

28–39. https://doi.org/10.1016/j.neunet.2020.12.022

Li, S., Jiang, H., & Pang, W. (2017). Joint multiple fully connected convolutional neural network with extreme

learning machine for hepatocellular carcinoma nuclei grading. Computers in Biology and Medicine, 84,

156–167. https://doi.org/10.1016/j.compbiomed.2017.03.017

Lin, C., Zhang, S., You, S., Liu, X., & Zhu, Z. (2021). Real-time foreground object segmentation networks using

long and short skip connections. Information Sciences, 571, 543–559.

https://doi.org/10.1016/j.ins.2021.01.044

Liu, Y. S., Huang, C. H., & You, S. D. (2021). Estimation of channel MSE for ATSC 3.0 receiver and its

applications. ICT Express, xxxx, 1–5. https://doi.org/10.1016/j.icte.2021.09.001

Liu, Y., Wang, X., Wang, L., & Liu, D. (2019). A modified leaky ReLU scheme (MLRS) for topology

optimization with multiple materials. Applied Mathematics and Computation, 352, 188–204.

https://doi.org/10.1016/j.amc.2019.01.038

Matsunobu, L. M., Pedro, H. T. C., & Coimbra, C. F. M. (2021). Cloud detection using convolutional neural

networks on remote sensing images. Solar Energy, 230(May), 1020–1032.

https://doi.org/10.1016/j.solener.2021.10.065

Moran, M. B. H., Faria, M. D. B., Giraldi, G. A., Bastos, L. F., & Conci, A. (2021). Using super-resolution

generative adversarial network models and transfer learning to obtain high resolution digital periapical

radiographs. Computers in Biology and Medicine, 129(July 2020), 104139.

https://doi.org/10.1016/j.compbiomed.2020.104139

Mukhopadhyay, A. K., Majumder, S., & Chakrabarti, I. (2022). Systematic realization of a fully connected deep

and convolutional neural network architecture on a field programmable gate array. Computers and

Electrical Engineering, 97(October 2020), 107628. https://doi.org/10.1016/j.compeleceng.2021.107628

Muralidharan, N., Gupta, S., Prusty, M. R., & Tripathy, R. K. (2022). Detection of COVID19 from X-ray images

using multiscale Deep Convolutional Neural Network. Applied Soft Computing, 119, 108610.

https://doi.org/10.1016/j.asoc.2022.108610

Qi, H., Xiao, S., Shi, R., Ward, M. O., Chen, Y., Tu, W., Su, Q., Wang, W., Wang, X., & Zhang, Z. (2018).

DEEP MULTI-SCALE VIDEO PREDICTION BEYOND MEAN SQUARE ERROR. In Nature (Vol.

388, pp. 539–547).

Suartika E. P, I. W., Wijaya, A. Y., & Soelaiman, R. (2016). Klasifikasi Citra Menggunakan Convolutional

Neural Network (Cnn) Pada Caltech 101. Jurnal Teknik ITS, 5(1), 76. http://repository.its.ac.id/48842/

Sun, J., Li, X., Tang, C., Wang, S. H., & Zhang, Y. D. (2021). MFBCNNC: Momentum factor biogeography

convolutional neural network for COVID-19 detection via chest X-ray images[Formula presented].

Knowledge-Based Systems, 232, 107494. https://doi.org/10.1016/j.knosys.2021.107494

Udayana, I. P. A. E. D., Sudarma, M., & Ariyani, N. W. S. (2021). Detecting Excessive Daytime Sleepiness

With CNN And Commercial Grade EEG. Lontar Komputer : Jurnal Ilmiah Teknologi Informasi, 12(3),

186. https://doi.org/10.24843/lkjiti.2021.v12.i03.p06

Upadhyay, P. K., Rastogi, S., & Kumar, K. V. (2022). Coherent convolution neural network based retinal

disease detection using optical coherence tomographic images. Journal of King Saud University -

Computer and Information Sciences, xxxx. https://doi.org/10.1016/j.jksuci.2021.12.002

Yang, L., Chen, W., Liu, W., Zha, B., & Zhu, L. (2020). Random Noise Attenuation Based on Residual

Convolutional Neural Network in Seismic Datasets. IEEE Access, 8(12), 30271–30286.

https://doi.org/10.1109/ACCESS.2020.2972464

https://doi.org/10.33395/sinkron.v7i2.11373

