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Abstract. Decision trees have been well studied and widely used in 

knowledge discovery and decision support systems. One of the 

applications of binary integer programming to form decision trees or 

decision making is the knapsack problem. The knapsack problem is an 

integer programming problem that involves only one constraint. The 

knapsack problem is generally illustrated with a bag and an item. The 

problem to be solved is to maximize the price of goods with a certain 

capacity that can be loaded by a bag with a certain capacity too. In 

solving the knapsack problem, it can generally be done directly. In this 

paper we are interested to show how the implicit enumeration method 

solves the knapsack problem to form an optimal decision tree. 
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INTRODUCTION 

Decision tree approximate discrete-valued target function as trees and widely used practical 

method for inductive inference (Mitchell & Mitchell, 1997). Decision trees have prospered in 

knowledge discovery and decision support systems because of their natural and intuitive paradigm to 

classify a pattern through a sequence of questions. Decision trees have been a very popular class of 

predictive models for decades due to their interpretability and good performance on categorical 

features. Decision trees (DTs, for short) are similar to flow-charts as they apply a sequence of binary 

tests or decisions to predict the output label of the input data (Zhou, 2021). 

One of the applications of binary integer programming to form decision trees or decision making is 

the knapsack problem. The knapsack problem is an integer programming problem that involves only 

one constraint (Martello & Toth, 1990; Winston & Goldberg, 2004). Masalah knapsack dapat 

diselesaikan dengan beberapa cara. Kita dapat menerapkan algoritma greedy untuk menyelesaikan 

masalah knapsack (Akçay et al., 2007). Furthermore, the knapsack problem can also be solved by an 

implicit enumeration algorithm. Some of the implicit enumeration algorithms are applicable to job-

shop scheduling problems (Lageweg et al., 1977) and school desegregation problem (Liggett, 1973). 

In this paper we are interested to show how the implicit enumeration method solves the knapsack 

problem to form an optimal decision tree. 

 

LITERATURE REVIEW 

Binary Integer Progamming 

Binary integer programming is a special case of integer programming, where each variable can 

only take on the value of 0 or 1. This may represent the selection or rejection of an option, the turning 

on or off of switches, a yes/no answer, or many other situations. In general, this binary integer 

programming problem can be modeled as follows: 

Minimize 𝑧 = ∑ 𝑐𝑗𝑥𝑗

𝑛

𝑗=1
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Subject to 
∑ 𝑎𝑖𝑗𝑥𝐽 ≤ 𝑏𝑖  ,    𝑖 = 1,2, … , 𝑚

𝑛

𝑗=1

 

𝑥𝑗 = 0 or 1,   𝑗 = 1,2, … , 𝑛 

Solving binary programming is actually easier to do by testing all the possibilities given that all the 

variables can only be 0 and 1. However, the test can take a long time if the number of variables is 

large enough. In general, if there are 𝑛 variables, then there are 2𝑛 possible solutions. 

 

Decision Tree 

A decision tree is a rooted tree 𝑇 that consists of internal nodes representing attributes, leaf nodes 

representing labels, and edges representing the attributes’ possible values. Decision tree classify 

instances by traversing from root node to leaf node. The classification process starts from root node of 

decision tree, tests the attribute specified by this node, and then moves down the tree branch 

according to the attribute value given (Cha & Tappert, 2008). 

 
Figure 1. Decision tree structure 

 

The concept of a decision tree is to convert data into a decision tree and decision rules. A decision 

tree is a set of if-then rules, where each path in the tree is associated with a rule where the premise 

consists of a set of nodes encountered and the conclusion of the rule consists of classes associated 

with the leaves of the path. 

One of the applications of binary integer programming to form decision trees or decision making is 

the knapsack problem. The knapsack (backpack) problem arises when you have 𝑛 items that can't all 

be put in one place (eg a bag/backpack). Each item has a different utility/benefit factor. The problem 

is choosing the items to carry (with limited space) so that the total utility is maximum. 

 

METHOD 

This research is a literature review. Given a knapsack problem and will be solved by implicit 

enumeration method. The basis of implicit enumeration is to enumerate a fraction of all possible 

solutions. Solutions that are not feasible or will produce a value that is not more optimal than the 

previously obtained value can be ignored. The implicit enumeration algorithm for solving binary 

integer programming (knapsack problem) is as follows (Morse et al., 2003; Sen, 2010): 

1. Forward Step 

Test whether an iteration node needs to be branched. If necessary, branch the point to the left 

by taking a value of 1 to an independent variable. Keep doing it until you get to a point where 

you don't need to branch anymore. 

2. Backtracking 

Look for the nearest node above it that has only a left branch (eg node 𝑣𝑘). If all the nodes 

above it already have 2 branches stop the process. 

Branch the  node  𝑣𝑘 to the right by taking the value 𝑥𝑘 = 0. 

Return to step (1). 

To reduce the number of iterations, at each node, a zero completion test and a feasibility test are 

carried out. Zero completion test is assigning a zero value to all independent variables. If the zero 
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solution is a feasible solution, the upper limit of the solution will be obtained. If it is not feasible, then 

a feasibility test must be carried out. The feasibility test is carried out by evaluating the maximum 

value of the slack variable on each constraint.If the maximum value of the slack variable in a 

constraint is negative (𝑠 < 0),, this means that it is not possible to obtain a feasible solution so that 

the node doesn’t need to be branched. On the other hand, if the maximum value of 𝑠 for all constraints 

is ≥ 0, it means that the point needs to be branched. 

 

RESULT AND DISCUSSIONS 

In this paper, we will use the knapsack problem with 3 variables. For example, given the knapsack 

problem as follows: An entrepreneur has 100 (million) funds to invest in construction, computer and 

foreign exchange businesses. The construction, computer and foreign exchange businesses require 

investments of 48, 39, and 25 (million) respectively and are expected to generate profits of 13, 10 and 

5 (million). Some of the decision choices of this problem can be modeled as a binary integer 

programming model. The appropriate model for this problem is as follows: 

Maximize  𝑧 = 13𝑥1 + 10𝑥2 + 5𝑥3 

(1) Subject to 48𝑥1 + 39𝑥2 + 25𝑥3 ≤ 100 

 𝑥1, 𝑥2, 𝑥3 = {0,1} 

where, 

𝑧 = maximum profit  

𝑥1 = construction business 

𝑥2 = computer business 

𝑥3 = foreign exchange business  

and defined 

𝑥𝑖 = {1 if the 𝑖th investment is selected          

0 if the 𝑖th investment is not selected
 

𝑖 = 1,2,3 

Because in this problem the model does not have a standard form of a binary integer programming, 

so it will be converted first into a standard form of a binary integer programming as follows: 

1. Changing the objective function to minimize by multiplying the coefficient of the objective 

function by 

 (-1), we have 

Minimize 𝑧 = −13𝑥1 − 10𝑥2 − 5𝑥3 

Subject to 48𝑥1 + 39𝑥2 + 25𝑥3 ≤ 100  
 𝑥1, 𝑥2, 𝑥3 = {0,1} 

 

2. Because the coefficient value in the objective function is negative, the transformation is carried 

out as follows: 

𝑥1 = 1 − 𝑦1 
𝑥2 = 1 − 𝑦2 
𝑥3 = 1 − 𝑦3 

Substituting into the objective and constraint functions, we have 

Minimize 𝑧 = −28 + 13𝑦1 + 10𝑦2 + 5𝑦3 

Subject to −48𝑦1 − 39𝑦2 − 25𝑦3 ≤ −12 

 

• Program 0 

Minimize  𝑧 = −28 + 13𝑦1 + 10𝑦2 + 5𝑦3 

Subject to −48𝑦1 − 39𝑦2 − 25𝑦3 ≤ −12 

𝑦1, 𝑦2, 𝑦3 = {0,1} 

 

Zero Completion Test 

If  𝑦1 = 𝑦2 = 𝑦3 = 0 then  𝑧 = −28 < 𝑧𝑢 = +∞ and on the constraint 0 ≰ −12. Therefore, it is 

necessary to do a feasibility test. 
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Feasibility Test 

𝑠 = −12 + 48𝑦1 + 39𝑦2 + 25𝑦3 
𝑠𝑚𝑎𝑘𝑠 = −12 + 48(1) + 39(1) + 25(1) 
𝑠𝑚𝑎𝑘𝑠 = 100 > 0 

Since 𝑠𝑚𝑎𝑘𝑠 > 0 then node- 0 must be branched to the left by taking 𝑦1 = 1 (Figure 2) 

 
Figure 2. Branching to the left of node 0 

 

• Program 1 

Substituting the value of 𝑦1 = 1 into program 0, we have: 

Minimize 𝑧 = −15 + 10𝑦2 + 5𝑦3 

Subject to −39𝑦2 − 25𝑦3 ≤ 36 

𝑦2, 𝑦3 = {0,1} 

 

 

 

 

Zero Completion Test 

If 𝑦2 = 𝑦3 = 0 then  𝑧 = −15 < 𝑧𝑢 = +∞ and on the constraint 0 ≤ 36. So the zero solution 

satisfies the constraint. This means that a new limit is obtained 𝑧𝑢 = 𝑧 = −15  and backtracking 

is carried out by branching node 0 to the right and taking the value  𝑦1 = 0 (Figure 3) 

 

 
Figure 3. Branching to the right of node 0 

 

• Program 2 

Substituting the value of 𝑦1 = 0 into program 0, we have: 

Minimize 𝑧 = −28 + 10𝑦2 + 5𝑦3 

Subject to −39𝑦2 − 25𝑦3 ≤ −12 

𝑦2, 𝑦3 = {0,1} 

 

Zero Completion Test 

if 𝑦2 = 𝑦3 = 0, then  𝑧 = −28 < 𝑧𝑢 = −15 and on the constraint 0 ≰ −12. Therefore, it is 

necessary to do a feasibility test. 

 

Feasibility Test 

𝑠 = −12 + 39𝑦2 + 25𝑦3 
𝑠𝑚𝑎𝑘𝑠 = −12 + 39(1) + 25(1) 
𝑠𝑚𝑎𝑘𝑠 = 52 > 0 

0 

1 

𝑦1 = 1 

0 

1 

𝑦1 = 1 

2 

𝑦1 = 0 

𝑧𝑢 = −15 
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Since 𝑠𝑚𝑎𝑘𝑠 > 0, then node 2 must be branched to the left by taking 𝑦2 = 1 (Figure 4). 

 

 
 

Firgure 4. Branching to the left of node 2 

 

• Program 3 

Substituting the value of 𝑦2 = 1  into program 2, we have: 

Minimize 𝑧 = −18 + 5𝑦3 

Subject to −25𝑦3 ≤ 27 

𝑦3 = {0,1} 

 

Zero Completion Test 

If 𝑦3 = 0, then  𝑧 = −18 < 𝑧𝑢 − 15 and on the constraint 0 ≤ 27. So the zero solution satisfies 

the constraint. This means that a new limit is obtained 𝑧𝑢 = 𝑧 = −18 and backtracking is carried 

out by branching node 2 to the right and taking the value  𝑦2 = 0 (Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Branching to the right of node 2 

 

• Program 4 

Substituting 𝑦2 = 0 into program 2 , we have: 

Minimize 𝑧 = −28 + 5𝑦3 

Subject to −25𝑦3 ≤ −12 

𝑦3 = {0,1} 

Zero Completion Test 

If 𝑦3 = 0 then 𝑧 = −28 < 𝑧𝑢 = −18 and on the constraint0 ≰ −12. Therefore, it is necessary to 

do a feasibility test. 

Feasibility Test 

𝑠 = −12 + 25𝑦3 

0 

1 

𝑦1 = 1 

2 

𝑦1 = 0 

3 

𝑦2 = 1 
𝑧𝑢 = −15 

0 

1 

𝑦1 = 1 

2 

𝑦1 = 0 

3 

𝑦2 = 1 
𝑧𝑢 = −15 

4 

𝑦2 = 0 

𝑧𝑢 = −18 

https://doi.org/%2010.33395/sinkron.v7i3.11601


 

Sinkron : Jurnal dan Penelitian Teknik Informatika 

Volume 6, Number 3, July 2022 

DOI : https://doi.org/ 10.33395/sinkron.v7i3. 11592 

e-ISSN : 2541-2019 

 p-ISSN : 2541-044X 
 

 

*Corresponding author 

  

 

This is an Creative Commons License This work is licensed under a Creative 

Commons Attribution-NonCommercial 4.0 International License. 2113 

 

𝑠𝑚𝑎𝑘𝑠 = −12 + 25(1) 
𝑠𝑚𝑎𝑘𝑠 = 13 > 0 

Since  𝑠𝑚𝑎𝑘𝑠 ≥ 0 then node 4 2 must be branched to the left by taking 𝑦3 = 1 (Figure 6). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Branching to the left of node 4 

 

• Program 5 

Substituting  𝑦3 = 1 into program 4, we have: 

Minimize  𝑧 = −23 

Subject to −25 ≤ −12 

𝑦3 = {0,1} 

Zero Completion Test 

Since there are no more independent variables, then  𝑧 = −23 < 𝑧𝑢 = −18 and the constraint 

is satisfied (true). So that the completion of zero is satisfied and a new upper limit is obtained, 

i.e., 𝑧𝑢 = 𝑧 = −23  and an upward backtracking process is carried out by branching node 4 to 

the right which takes the value 𝑦3 = 0  (Figure 6). 

 

• Program 6 

Substituting  𝑦3 = 1 into program 4, we have: 

Minimize 𝑧 = −28 

Subject to 0 ≤ −12 

𝑦3 = {0,1} 

Zero Completion Test 

Since there are no more independent variables, then 𝑧 = −28 < 𝑧𝑢 = −23  and the constraint 

is not satisfied, it is necessary to do a feasibility test. 

 

Feasibility Test 

𝑠 = −12 
𝑠𝑚𝑎𝑘𝑠 = −12 

Since  𝑠𝑚𝑎𝑘𝑠 < 0, then node 6 doesn’t need to be branched again and the backtracking process 

cannot be carried out because all nodes above node 6 already have 2 branches, which means the 

iteration process has been completed. 
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𝑦3 = 1 

0 

1 

𝑦1 = 1 

2 

𝑦1 = 0 

3 

𝑦2 = 1 
𝑧𝑢 = −15 

4 

𝑦2 = 0 

𝑧𝑢 = −18 
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Figure 7. Branching to the right of node 4 

 

Optimal Solution 

The optimal solution is at node 5 with a value of 𝑦1 = 0, 𝑦2 = 0, 𝑦3 = 1 and 𝑧𝑢 = −23. If we back 

to the original problem then: 

𝑥1 = 1 − 𝑦1 = 1 − 0 = 1 
𝑥2 = 1 − 𝑦2 = 1 − 0 = 1 
𝑥3 = 1 − 𝑦3 = 1 − 1 = 0 

with the maximum value 𝑧𝑢 = 23. 

So in order to obtain the maximum profit, the entrepreneur must invest (allocate) the funds to the 

construction business (𝑥1) of 48 million and the computer business (𝑥2) of 39 million, of which the 

maximum profit to be obtained is 23 million. 

 

CONCLUSION 

Trees can be used as interpretations in various disciplines. The use of trees as an analytical method 

in decision making is very useful and provides convenience in decision making. In the case of binary 

classification, decision making can be formulated in the form of a binary programming model and one 

of the effective methods for solving it is the implicit enumeration method, which has the advantage of 

simple coding and optimal solutions can be obtained without explicitly evaluating all possible 

solutions. 
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