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Abstract. Online business has increased during the COVID-19 pandemic, but the 

emergence of a number of problems, namely reduced material supply, price 

fluctuations because an item is difficult to distribute and slow delivery due to 

transportation of goods based on the type of transportation used (Trucks, Trains, 

Airplanes and Ships). A number of declines due to the COVID-19 virus 

pandemic, resulting in longer order waiting times. Pick-up and Delivery Issues are 

variations of Vehicle Routing Issues that appear in many real-world transportation 

scenarios, such as product delivery and courier services. This work studies the 

Pickup and Delivery Problem with Time Windows, where goods must be 

transported from one location to another, with taking into account certain time 

limits and vehicle capacity. This aims to minimize the number of vehicles used, 

as well as operational costs for all routes. To solve this problem, a mathematical 

model in the form of is used Mixed Integer Linear Programming (MILP) from 

Pickup and Delivery Problems with Time Windows. 
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INTRODUCTION 

Transportation and mobility in modern societies are seen as major concerns by people, companies and 

the public services. These problems have been studied with much interest by the scientific community for 

years, contributing to a better logistic network, cost reduction, and the improvement of service quality and 

urban mobility (Toth & Vigo, 2002; Van der Bruggen et al., 1993). In the field of combinatorial 

optimization and operations research, the problem related to transportation and mobility that has received 

a lot of attention is the Vehicle Routing Problem (VRP). The VRP aims at building a set of vehicle routes 

to attend a set of customers, so that operational costs are minimized. It is used to model several real world 

situations, and has many variations, each one considering different constraints and scenarios (Savelsbergh, 

1992).  

This work focuses on the case where goods should be transported from one location to another, while 

respecting the capacity of the vehicles, as well as the specific periods of time when goods can be picked up 

and delivered at each location. In the scientific literature this problem is modeled as a variation of the VRP, 

known as Pickup and Delivery Problem with Time Windows (PDPTW), which has a great applicability in 

the transportation field (Bent & Van Hentenryck, 2006; Cordeau et al., 2008). The Pickup and Delivery 

Problem with Time Windows is part of a wider class of problems, the so-called Vehicle Routing 

Problems. The VRP has more than fifty years of scientific studies, with the first work dating from the end 

https://doi.org/10.33395/sinkron.v7i3.11593
mailto:syahrainimuhid@gmail.com


 

 

Sinkron : Jurnal dan Penelitian Teknik Informatika 
Volume 6, Number 3, July 2022 

DOI : https://doi.org/10.33395/sinkron.v7i3.11593 

e-ISSN : 2541-2019 
 p-ISSN : 2541-044X 

 

 

*Corresponding author 
  

 
This is an Creative Commons License This work is licensed under a Creative 

Commons Attribution-NonCommercial 4.0 International License. 2039 

 

of the 1950s (Dantzig & Ramser, 1959). In the VRP, there is a set of requests, or customers, with demands to 

be supplied by a fleet of vehicles located in a common location, the depot. The goal is to build a route for 

each vehicle so that all requests are attended and that costs are minimized. The definition of how a route 

is constructed and costs are minimized are both linked to the variant considered, more specifically, to its 

restrictions (Laporte, 1992; Solomon, 1987). The VRP generalizes the classical N P-Hard Travelling 

Salesman Problem (TSP), so it is N P-Hard as well. In fact, the TSP can be thought as a special case of the 

VRP, where the requests are the locations, or cities, which should be visited only once, and there is only 

one route that starts and ends at the same location. The cost function to be minimized is the total distance 

travelled. However, the TSP is usually not classified as a VRP variation, having its own set of variations. 

The classical and most studied variation of VRP is actually the Capacitated Vehicle Routing Problem 

(CVRP) (Merz & Huhse, 2008). 

In it, just as in the TSP, all requests should be visited only once, but they have a certain demand, while 

all the vehicles have a maximum capacity to attend all demands. This capacity should never be exceeded 

during a route. All vehicles start and end their routes at a single common depot, and a vehicle can have at 

most one route. The cost function to be minimized is the total cost of all routes. 

Further, another commonly studied VRP variation is the Vehicle Routing Problem with Time Windows 

(VRPTW). In this case, the requests have a defined time interval in which service can occur. Other 

restrictions are usually very close to the ones of the CVRP, and in fact most studies of the VRPTW 

actually consider the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW), being a 

generalization of the CVRP. The two most common cost functions to be minimized are the total cost of the 

routes, and the total travel time by all vehicles. The last variation to be referred and later detailed is the 

Pickup and Delivery Problem with Time Windows, which generalizes the VRPTW. In the PDPTW, the 

vehicles no longer deliver goods from a depot to the customers, but instead the customers need goods to 

be transported from a pickup location to a delivery location. These visits should also respect a time 

interval to happen at each location, just as in the VRPTW. The cost function to be minimized is usually 

the total cost of all routes, the number of vehicles used, or even a combination of both (Agra et al., 2012; 

Kang & Lee, 2018). 

 

LITERATUR REVIEW 

Vehicle Routing Problem 

The Pickup and Delivery Problem with Time Windows is part of a wider class of problems, the so-

called Vehicle Routing Problems. The VRP has more than fifty years of scientific studies, with the first 

work dating from the end of the 1950s (Dantzig & Ramser, 1959). In the VRP, there is a set of requests, or 

customers, with demands to be supplied by a fleet of vehicles located in a common location, the depot. 

The goal is to build a route for each vehicle so that all requests are attended and that costs are minimized. 

The definition of how a route is constructed and costs are minimized are both linked to the variant 

considered, more specifically, to its restrictions. The VRP generalizes the classical N P-Hard Travelling 

Salesman Problem (TSP), so it is N P-Hard as well. In fact, the TSP can be thought as a special case of 

the VRP, where the requests are the locations, or cities, which should be visited only once, and there is 

only one route that starts and ends at the same location. The cost function to be minimized is the total 

distance travelled. However, the TSP is usually not classified as a VRP variation, having its own set of 

variations. The classical and most studied variation of VRP is actually the Capacitated Vehicle Routing 

Problem (CVRP). In it, just as in the TSP, all requests should be visited only once, but they have a certain 

demand, while all the vehicles have a maximum capacity to attend all demands. This capacity should never 

be exceeded during a route. All vehicles start and end their routes at a single common depot, and a vehicle 

can have at most one route. The cost function to be minimized is the total cost of all routes. 

Further, another commonly studied VRP variation is the Vehicle Routing Problem with Time Windows 

(VRPTW). In this case, the requests have a defined time interval in which service can occur. Other 
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restrictions are usually very close to the ones of the CVRP, and in fact most studies of the VRPTW 

actually consider the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW), being a 

generalization of the CVRP. The two most common cost functions to be minimized are the total cost of the 

routes, and the total travel time by all vehicles. The last variation to be referred and later detailed is the 

Pickup and Delivery Problem with Time Windows, which generalizes the VRPTW. In the PDPTW, the 

vehicles no longer deliver goods from a depot to the customers, but instead the customers need goods to 

be transported from a pickup location to a delivery location. These visits should also respect a time 

interval to happen at each location, just as in the VRPTW. The cost function to be minimized is usually 

the total cost of all routes, the number of vehicles used, or even a combination of both. 

 

METHODS 

In the studied Pickup and Delivery Problem with Time Windows, a set of routes has to be constructed 

in order to satisfy transportation requests. The transportation requests specify an origin location, referred 

as pickup, and a destination location, referred as delivery. A delivery may only happen after its 

corresponding pickup (so called precedence constraint). A fleet of identical vehicles is available to attend 

such requests with a given maximum capacity. Each request should be transported by only one of these 

vehicles, that is, there is no transhipment. (Cordeau et al., 2008) define the same version of PDPTW as a 

Multi Vehicle one-to-one static Pickup and Delivery Problem with Time Windows. It is said to be multi-

vehicle because allows more than one route, as opposed to single-vehicle variations where only one route 

is allowed. It is called one-to-one, because for each pickup request there is only one corresponding 

delivery. And it is a static version because all requests are known beforehand, while in the dynamic 

requests become available during the optimization process (Desrosiers et al., 1986; Psaraftis, 1988). 

 

The PDPTW has a set of n transportation requests and all of them should be at tended. Each request has: 

(i) pickup location; (ii) delivery location; (iii) time window for pickup, indicating the earliest and latest 

time the pickup may be performed; (iv) time window for delivery; (v) service time, or how much time a 

vehicle takes to complete the service; and (vi) demand, how many units of goods the vehicle should pickup 

and deliver. The demand of the delivery location should be strictly complementary to the one of the pickup 

locations, i.e., if the pickup location has demand a, the delivery should have demand −a. It is important to 

distinguish between the types of time windows restrictions. These can be soft time windows, or hard time 

windows. The former considers a scenario where time windows can be violated, in order to perform all the 

deliveries. The latter considers the opposite scenario, where time windows cannot be violated, and a 

violation leads to an infeasible solution. The problem being studied considers only hard time windows. The 

fleet of m vehicles is located at a common starting location, referred as depot, from where vehicles start 

and end their routes. The problem considers that there is only one depot, and it has its own time window, 

defining the size of the planning horizon, or the maximum time a vehicle route can have. A solution to the 

PDPTW can be given in a graph as a set of vehicle routes, and a vehicle route is a set of ordered locations, 

or nodes, to be visited. The aim of the PDPTW is to find a feasible solution, so that the number of vehicles 

(|𝑠|) is minimized, and the total cost of the routes is also minimized. This defines and hierarchical order of 

minimization, the first being the number of routes, and the second the total operational cost of the routes. 

 

RESULTS AND DISCUSSION 

This section presents a formal description of the PDPTW through a mathematical model in Mixed 

Integer Linear Programming (MILP) form, based on the work of (Grandinetti et al., 2014). The 

formulation considers the same objective function of (Lima et al., 2003), minimizing first the number of 

vehicles, and second the cost of all routes. As in other variations of VRP, the problem is defined on a 

graph 𝐺 = (𝑉, 𝐴), where 𝑉 is the set of all nodes and 𝐴 the set of all arcs connecting two nodes. A usual 
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PDPTW scenario has 𝑛 requests and a maximum of 𝑚 vehicles to be used. This defines the following sets: 

𝑃 ⊂ 𝑉 the set of all pickup locations, D ⊂ V the set of all delivery locations and K the set of all vehicles, 

such that |P| = |D| = n and |K| = m. Each node p ∈ P has strictly one corresponding delivery pair, denoted 

as dev(p); analogously, each node d ∈ D has a unique pickup location. Two depots are considered in this 

model: the departure δ0 = 0, and the arrival δ1 = 2n + 1, which could be physically the same. Then, the set 

of all nodes is given by V = P 𝖴 D 𝖴 {δ0, δ1}. Also, each arc a ∈ A connecting two nodes i, j ∈ V has a 

time 𝑡𝑖𝑗,  and a cost 

𝑐𝑖𝑗 of using this arc. It is assumed the times and costs are non-negative, and that arc times satisfy the 

triangular inequality. Each node i ∈ V has a service time 𝑠𝑖 and a time window [𝑒𝑖, 𝑙𝑖]. 
A vehicle is allowed to arrive at a location before service can start (before 𝑒𝑖), but in this case it must 

wait until the start of time window to perform the visit. Though, a vehicle is never allowed to arrive after 

the maximum time 𝑙𝑖. Additionally, every node has a demand 𝑄𝑖 associated, being 𝑄𝑖 > 0 when 𝑖 ∈ 𝑃, 𝑄𝑖 
i when i ∈ D and 𝑄𝑖 = 0 when i ∈ 
{δ0, δ1}. This demand corresponds to the amount of goods a vehicle must pickup or deliver at the given 

location. The homogeneous fleet of vehicles has a maximum capacity U per vehicle. There is also a cost 

associated for allocating a vehicle to a route, given as a weight parameter ω. This weight should be big 

enough in order to dominate the objective function’s value and drive the search to solutions with fewer 

vehicles. In practice, ω is defined according to the number of locations in the problem, so that it is able to 

dominate the value. Four sets of decision variables are used in this model: 𝑥𝑖𝑗𝑘, 𝑖, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾, a binary 

variable which assumes one if the arc (i, j) is traversed by vehicle k, and zero otherwise; 𝑦𝑘, 𝑘 ∈ 𝐾, a 

binary variable which takes value one if vehicle k is used, and zero otherwise; ℎ𝑖𝑘, i ∈ V, k ∈ K, a real 

variable, which indicates the time vehicle k starts service at node i; and 𝑞𝑖𝑘, i ∈ V, k ∈ K, a real variable 

indicating the remaining capacity of vehicle k before leaving node i. Both variables ℎ𝑖𝑘 and 𝑞𝑖𝑘 are only 

well defined when vehicle k is used. Then, the mathematical model is given as follows: 

 

 

Minimize 𝜔 ∑𝑘∈𝐾 𝑦𝑘 + ∑𝑖∈𝑉 ∑𝑗∈𝑉 ∑𝑘∈𝐾 
𝑐𝑖𝑗𝑥𝑖𝑗𝑘, 
Subject to 

 (2.1) 

∑𝑘∈𝐾 ∑𝑗∈𝑉|𝑗≠𝑖 𝑥𝑖𝑗𝑘 = 1 ∀𝑖∈ 𝑃 (2.2) 

∑𝑗∈𝑉|𝑗≠𝑖 𝑥𝑖𝑗𝑘 − ∑𝑗∈𝑉|𝑗≠𝑖 𝑥𝑑𝑒𝑣(𝑖)𝑗𝑘 = 0 ∀𝑖∈ 𝑃, 𝑘 ∈ 𝐾 (2.3) 

∑𝑗∈𝑉|𝑗≠𝛿0 𝑥𝛿0𝑗𝑘 = 𝑦𝑘 ∀𝑘 ∈ 𝐾 (2.4) 

∑𝑗∈𝑉|𝑗≠𝛿1 𝑥𝛿1𝑗𝑘 = 𝑦𝑘 ∀𝑘 ∈ 𝐾 (2.5) 

∑𝑖∈𝑉 ∑𝑗∈𝑉|𝑗≠𝑖 𝑥𝑖𝑗𝑘 ≤ 𝑊𝑦𝑘 ∀𝑘∈ 𝐾 (2.6) 

∑𝑗∈𝑉|𝑗≠𝑖 𝑥𝑖𝑗𝑘 − ∑𝑗∈𝑉|𝑗≠𝑖 𝑥𝑖𝑗𝑘 = 0 ∀𝑖∈ 𝑃 𝖴 𝐷, 𝑘 ∈ 𝐾 (2.7) 

ℎ𝑗𝑘 ≥ ℎ𝑖𝑘 + (𝑡𝑖𝑗 + 𝑠𝑖)𝑥𝑖𝑗𝑘 − 𝑊(1 − 

𝑥𝑖𝑗𝑘) 

∀𝑖∈ 𝑗 ∈ 𝑉|𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 
(2.8) 

ℎ𝑑𝑒𝑣(𝑖)𝑘 ≥ ℎ𝑖𝑘 + 𝑡𝑖 𝑑𝑒𝑣(𝑖) ∑𝑗∈𝑉|𝑗≠𝑖 

𝑥𝑖𝑗𝑘 

∀𝑖∈ 𝑃, 𝑘 ∈ 𝐾 
(2.9) 

ℎ𝑖𝑘 ≥ 𝑒𝑖 ∀𝑖∈ 𝑉, 𝑘 ∈ 𝐾 (2.10) 

ℎ𝑖𝑘 ≥ 𝑙𝑖 ∀𝑖∈ 𝑉, 𝑘 ∈ 𝐾 (2.11) 
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𝑞𝑗𝑘 ≥ 𝑞𝑖𝑘 + 𝑄𝑗 − 𝑊(1 − 𝑥𝑖𝑗𝑘) ∀𝑖∈ 𝑗 ∈ 𝑉|𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 (2.12) 

max(0, 𝑄𝑖) ∑𝑗∈𝑉|𝑗≠𝑖 𝑥𝑖𝑗𝑘 < 𝑞𝑖𝑘 ∀𝑖∈ 𝑉, 𝑘 ∈ 𝐾 (2.13) 

min(𝑈, 𝑈 + 𝑄𝑖) ∑𝑗∈𝑉|𝑗≠𝑖 𝑥𝑖𝑗𝑘 < 𝑞𝑖𝑘 ∀𝑖∈ 𝑉, 𝑘 ∈ 𝐾 (2.14) 

𝑥𝑖𝑗𝑘, 𝑦𝑘 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (2.15) 

ℎ𝑖𝑘, 𝑦𝑖𝑘 ∈ ℝ ∀𝑖∈ 𝑉, 𝑘 ∈ 𝐾 (2.16) 

 

As stated previously, the objective function (2.1) minimizes the accumulated costs. Parameter ω is 

responsible for relating the cost of each route in solution to the number of vehicles used, resulting in the 

final total operational cost. Constraint (2.2) ensures that all requests are attended, while (2.3) ensures the 

pairing condition, that is, if a vehicle k serves a pickup p, then k must also serve the delivery pair of p, 

dev(p). Constraints (2.4) and (2.5) assure that for each route, only one arc leaves depot 𝛿0 and only one arc 

arrives at depot 𝛿1, respectively. Constraints (2.6) link the x- variables to the y-variables: if an arc (i, j) is 

traversed by vehicle k, then k must be considered used (𝑦𝑘 = 1); on the other hand, if a vehicle k does not 

traverse arc (i, j), the corresponding x must be zero. Here, W is defined as a large non-negative scalar. 

Next, constraint (2.7) is the flow conservation constraint, stating that the number of incoming arcs must 

be equal to the number of outgoing arcs for all nodes, except the depots. Constraint (2.8) assures all nodes 

in a route are served after their predecessor, and constraint (2.9) ensures the precedence constraint, that is, 

a delivery node can only be served after its corresponding pickup node. Constraints (2.10) and (2.11) 

impose the time window limits for service to occur in node i, being the earliest time and latest time, 

respectively. Constraint (2.12) updates the remaining capacity of a vehicle before leaving node i. 

Constraints (2.13) and (2.14) assure that a vehicle’s transportation will neither become negative nor 

exceed its maximum capacity U. Finally, constraint (2.15) ensures the binary condition of the x and y-

variables, as well as, (2.16) set variables h and q to be real. 

 

CONCLUSION 

In this study, the authors propose a mathematical model in the form of Mixed Integer Linear 

Programming (MILP) from Pickup and Delivery Problems with Time Windows, in which goods must be 

transported from one location to another, taking into account time limits and certain vehicle capacities. 

This aims to minimize the number of vehicles used, as well as operational costs for all routes. 

 

REFERENCES 

Agra, A., Christiansen, M., Figueiredo, R., Magnus Hvattum, L., Poss, M. & Requejo, C. (2012). Layered 

Formulation for the Robust Vehicle Routing Problem with Time Windows. In A. R. Mahjoub, V. 

Markakis, I. Milis & V. T. Paschos (Eds.), Combinatorial Optimization (Vol. 7422, pp. 249–260). 

Springer Berlin Heidelberg. 

Bent, R. & Van Hentenryck, P. (2006). A two-stage hybrid algorithm for pickup and delivery vehicle routing 

problems with time windows. Computers & Operations Research, 33(4), 875–893. 

Cordeau, J.-F., Laporte, G. & Ropke, S. (2008). Recent models and algorithms for one-to-one pickup and 

delivery problems. In The vehicle routing problem: latest advances and new challenges (pp. 327–357). 

Springer. 

Dantzig, G. B. & Ramser, J. H. (1959). The truck dispatching problem. Management Science, 6(1), 80–91. 

Desrosiers, J., Dumas, Y. & Soumis, F. (1986). A dynamic programming solution of the large-scale single-

vehicle dial-a-ride problem with time windows. American Journal of Mathematical and Management 

Sciences, 6(3–4), 301–325. 

https://doi.org/10.33395/sinkron.v7i3.11593


 

 

Sinkron : Jurnal dan Penelitian Teknik Informatika 
Volume 6, Number 3, July 2022 

DOI : https://doi.org/10.33395/sinkron.v7i3.11593 

e-ISSN : 2541-2019 
 p-ISSN : 2541-044X 

 

 

*Corresponding author 
  

 
This is an Creative Commons License This work is licensed under a Creative 

Commons Attribution-NonCommercial 4.0 International License. 2043 

 

Grandinetti, L., Guerriero, F., Pezzella, F. & Pisacane, O. (2014). The multi-objective multi-vehicle pickup 

and delivery problem with time windows. Procedia-Social and Behavioral Sciences, 111, 203–212. 

Kang, H.-Y. & Lee, A. H. I. (2018). An Enhanced Approach for the Multiple Vehicle Routing Problem with 

Heterogeneous Vehicles and a Soft Time Window. Symmetry, 10(11), 650. 

Laporte, G. (1992). The vehicle routing problem: An overview of exact and approximate algorithms. 

European Journal of Operational Research, 59(3), 345–358. https://doi.org/10.1016/0377-

2217(92)90192-C 

Lima, F. G. M., Galiana, F. D., Kockar, I. & Munoz, J. (2003). Phase shifter placement in large-scale 

systems via mixed integer linear programming. IEEE Transactions on Power Systems, 18(3), 1029–

1034. 

Merz, P. & Huhse, J. (2008). An iterated local search approach for finding provably good solutions for very 

large TSP instances. International Conference on Parallel Problem Solving from Nature, 929–939. 

Psaraftis, H. N. (1988). Dynamic vehicle routing problems. Vehicle Routing: Methods and Studies, 16, 223–

248. 

Savelsbergh, M. W. P. (1992). The vehicle routing problem with time windows: Minimizing route duration. 

ORSA Journal on Computing, 4(2), 146–154. 

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window 

constraints. Operations Research, 35(2), 254–265. 

Toth, P. & Vigo, D. (2002). The vehicle routing problem. SIAM. 

Van der Bruggen, L. J. J., Lenstra, J. K. & Schuur, P. C. (1993). Variable-depth search for the single-vehicle 

pickup and delivery problem with time windows. Transportation Science, 27(3), 298–311. 

 

https://doi.org/10.33395/sinkron.v7i3.11593

