THE CYCLE LENGTH OF SPARSE REGULAR GRAPH

Claudia Christy ${ }^{1)}$ Saib Suwilo ${ }^{2)}$, Tulus ${ }^{3)}$
University of Sumatera Utara, Medan, Indonesia
${ }^{\text {a) }}$ claudiachristy98@ gmail.com, ${ }^{\text {b) }}$ saib@usu.ac.id

Submitted : July 31, 2022 | Accepted : June 25, 2022 | Published : August 12, 2022

Abstract

Let G be a d-reguler graph with girth g. Set of cycle length in $\operatorname{Graf} G$ is denoted by $C(G)$. Graph G is a sparse graph if and only if $\frac{2 .|E|}{|V|(|V|-1)}<\frac{1}{2}$. Furthermore, it was obtained the number of cycle length of sparse d-reguler graph which denoted $|C(G)|$ is $\Omega\left(d^{\lfloor(g-1) / 2\rfloor}\right)$.

INTRODUCTION

Let $C(G)$ denote the set of lengths of cycles in a graph G. According to (Erdös, 1993), every graph with minimum degree three contains a cycle with length 2^{n}, which n is the number of vertices in G. An advance research was initiated by (Erdős et al., 1999), it was founded that the lower bound of cycle lengths of graph with minimum degree k and girth g is $c k^{g / 8}$. The recent research was done by (Groenland et al., 2022; Sudakov \& Verstraëte, 2007) which shows that sparse graph with average degree d and girth g contains cycle with lengths $\Omega\left(d^{\lfloor(g-1) / 2\rfloor}\right)$.
Since n-vertex graphs with average degree d may have girth at least $\log _{d-1} n$, we cannot guarantee $C(G)$ for sparse graph contains integer from a finite set. (Erdos \& Hajnal, 1969) conjectured

$$
\sum_{l \in C(G)} \frac{1}{l}=\Omega(\log d)
$$

whenever G has average degree d. (Here and throughout the paper the notation $a_{d}=\Omega\left(b_{d}\right)$ means that there is an absolute constant C such that $a_{d} \geq C b_{d}$ when $d \rightarrow \infty$). Therefore, if a graph does not have too many short cycles, then it must have many long cycles. Thus, the aim of this paper is to find the lower bound of $|C(G)|$ when G is a d-reguler graph with girth g. The condition of girth G will closely related to the condition of its sparsity.

LITERATURE REVIEW

PRELIMINARIES

Let G be a d-reguler graph with girth $g . C(G)$ is the set of cycle length in graph G. The example of regular graph is Moore Graph (Bannai \& Ito, 1973). Moore Graph is a graph with minimum degree d and girth g. The number of vertices in Moore Graph states

$$
|V(G)| \geq \begin{cases}1+d+d(d-1)+\cdots+d(d-1)^{\left.\frac{g-1}{2} \right\rvert\,-1} & \text { if } g \text { is odd } \\ 2\left(1+d+d(d-1)+\cdots+d(d-1)^{\left.\frac{g-1}{2} \right\rvert\,-1}\right) & \text { if } g \text { is even }\end{cases}
$$

An open neighborhood of $X \subset V(G)$ in graph G is defined by

$$
\partial X=\{y \in V(G) \backslash X \mid \exists x \in X:\{x, y\} \in E(G)\}
$$

The open neighborhood of X is a set of vertices which is not in X and adjacent to at least one vertex of X. The d-core of graph G (if exists), is a subgraph which obtained by omitting vertices which degree is $d-1$. Thus, if a graph has average degree $2 d$, then it has a $d-$ core.
Theorem 1. Let G be a -reguler graph with girth g. Then $C(G)$ contains $\Omega\left(d^{\lfloor(g-1) / 2\rfloor}\right)$ consecutive even integers.
The aim of this paper is to prove Theorem 1 by using these following Lemma and Theorem.

*Corresponding author

This is an Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

RESULT

Lemma 2. Let G is $6(d+1)$-regular graph with girth g, then for every $X \subset V(G)$ with maximum size $\frac{1}{3} d^{[(g-1) / 2]}$,

$$
|\partial X|>2|X|
$$

Proof. Suppose $|\partial X| \leq 2|X|$ for some $X \subset V(G)$. We will show that $|X|>\frac{1}{3} d^{[(g-1) / 2]}$. Let H be a subgraph of G which spanned by $Y=X \cup \partial X$. Because ∂X is a set of vertices which are not in X, therefore ∂X and X are mutually exclusive. Thus,

$$
\begin{aligned}
|Y| & =|X|+|\partial X| \\
|\partial X| & =|Y|-|X|
\end{aligned}
$$

The first argumentation in proving this lemma, we have $|\partial X| \leq 2|X|$. So, we obtain

$$
\begin{array}{r}
|Y|-|X| \leq 2|X| \\
|Y| \leq 3|X|
\end{array}
$$

From Theorem of the number of edge related to the degree of a graph, we obtain

$$
e(H) \geq \frac{1}{2} \sum_{x \in X} d(x) \geq \frac{1}{2} 6(d+1)|X| \geq 3(d+1)|X|
$$

By substituting

$$
\begin{aligned}
& |Y| \leq 3|X| \\
& \frac{1}{3}|Y| \leq|X|
\end{aligned}
$$

We obtain

$$
e(H) \geq \frac{1}{2} \sum_{x \in X} d(x) \geq \frac{1}{2} 6(d+1)|X| \geq 3(d+1)|X| \geq(d+1)|Y|
$$

Thus, H contain a subgraph Γ with minimum degree $d+1$.
By applying Moore Bound (Alon et al., 2002), we obtain

$$
\begin{array}{r}
|Y| \leq 3|X| \\
3|X| \geq|Y| \geq|V(\Gamma)|>1+\sum_{i=0}^{k-1} d(d-1)^{i} \\
3|X| \geq|Y| \geq|V(\Gamma)|>1+d \sum_{i=0}^{k-1}(d-1)^{i}
\end{array}
$$

Because the minimum degree is $d+1$, by substituting $d+1$ we obtain

$$
\begin{gathered}
3|X| \geq|Y| \geq|V(\Gamma)|>1+(d+1) \sum_{i<\left\lfloor\frac{g-1}{2}\right\rfloor}^{i<}(d+1-1)^{i} \\
3|X| \geq|Y| \geq|V(\Gamma)|>1+(d+1) \sum_{i<\left\lfloor\frac{g-1}{2}\right\rfloor} d^{i} \\
3|X| \geq|Y| \geq|V(\Gamma)|>1+(d+1) \sum_{i<\left\lfloor\frac{g-1}{2}\right\rfloor}^{i} d^{i}>d^{\lfloor(g-1) / 2\rfloor}
\end{gathered}
$$

Thus

$$
\begin{aligned}
& 3|X|>d^{\lfloor(g-1) / 2\rfloor} \\
& |X|>\frac{1}{3} d^{\lfloor(g-1) / 2\rfloor}
\end{aligned}
$$

as required.
Theorem 3. For every graph $G 48(d+1)$-regular with girth $g,|C(G)| \geq \frac{1}{8} d^{\lfloor(g-1) / 2\rfloor}$.
Proof. Let H be a maximum bipartite subgraph of G, which contain at least half of the edges of G. Then, some connected component F in H is a graph with average degree at least $24(d+1)$. Let T be a breadth first search tree in F, and let L_{i} denote the set of vertices of T at distance i from the root of *Corresponding author
T. Since F is bipartite, so there is no edge of F joins two vertices of $L_{i} . e\left(L_{i}, L_{i+1}\right)$ denote the number of edges of F with one endpoint in L_{i} and one endpoint in L_{i+1}. Accordingly,

$$
\sum_{i} e\left(L_{i}, L_{i+1}\right)=e(F)
$$

By Theorem of the number of edge related to the degree of a graph, we obtain

$$
\begin{gathered}
\sum_{i} e\left(L_{i}, L_{i+1}\right)=e(F) \geq \frac{1}{2} 24(d+1)|V(F)| \\
\sum_{i} e\left(L_{i}, L_{i+1}\right)=e(F) \geq 12(d+1)|V(F)| \\
\sum_{i} e\left(L_{i}, L_{i+1}\right)=e(F) \geq 6(d+1) \sum_{i}\left|L_{i}\right|+\left|L_{i+1}\right|
\end{gathered}
$$

Thus, $L_{i} \cup L_{i+1}$ has average degree at least $12(d+1)$. Then, we obtain subgraph $F_{i} \subset F$. Then, F_{i} contain subgraph Γ with average degree $6(d+1)$. By Lemma 2, we obtain $|\partial X|>2|X|$ for every $X \subset V(G)$, has maximum size $\frac{1}{3} d^{\lfloor(g-1) / 2\rfloor}$. By Posa's Lemma (Pósa, 1965; Raymond \& Thilikos, 2017), Γ contain path P with length $d^{\lfloor(g-1) / 2\rfloor}$. Let T^{\prime} be a minimal subtree of T whose set of end vertices is $V(P) \cap L_{i}$. The minimality of T^{\prime} ensures that it branches at the root. Let A be the set of vertices in $V(P) \cap L_{i}$ in one of these branches and let $B=\left(V(P) \cap L_{i}\right) \backslash A$. So, A, B are not empty sets and path from A to B through its root have the same length, says $2 h$.
We assume,

$$
\begin{gathered}
|B| \geq|A| \\
|B| \geq \frac{1}{4}|P| \\
\frac{1}{2}|B| \geq \frac{1}{8}|P|
\end{gathered}
$$

If a is a vertices in A, therefore, there is exist subpath P from a to a vertices in B of at least $\frac{1}{8}|P|$ different lengths. For any path Q, there is a unique subpath R of T^{\prime} through the root joining the endpoints of Q, so that $Q \cup R$ is a cycle in G. Since all R have the same length $2 h$, we obtain

$$
|C(G)| \geq \frac{1}{8} d^{\lfloor(g-1) / 2\rfloor}
$$

Lemma 4. Let G be a $48(d+1)$-regular graph with girth g, where $d^{\lfloor(g-1) / 2\rfloor} \geq 6$. Then, G contains θ-graph which contain a cycle of length at least $d^{\lfloor(g-1) / 2\rfloor}+2$.
Proof. Let the path P, tree T^{\prime} and set L_{i} be defined as in the proof of Theorem 3. Since $d^{\lfloor(g-1) / 2\rfloor} \geq$ 6, we have $\left|V(P) \cap L_{i}\right| \geq 3$. Let $Q \subset P$ be a path of length at least $|E(P)|-2$ with endpoints in L_{i}. Because $\left|V(Q) \cap L_{i}\right| \geq 3$, therefore Q has an interior vertex in L_{i}. If R is a path in T^{\prime} joining the endpoints of Q, then $Q \cup R$ form a cycle of length at least $d^{\lfloor(g-1) / 2\rfloor}+2$. So, for some path $S \subset T^{\prime}$ from the root of T^{\prime} to an interior vertex of Q in L_{i}, the subgraph $Q \cup R \cup S$ is the required θ-graph.

It is convenient to define an $A B$-path in a graph G to be a path with one endpoint in A and one endpoint in B, where $A, B \subset V(G)$. This following Lemma is obtained by (Bondy \& Simonovits, 1974).

Lemma 5. Let Γ be a θ-graph and let (A, B) be a nontrivial partition of $V(\Gamma)$. Then Γ contains $A B$-paths of all lengths less than $|V(\Gamma)|$ unless Γ is bipartite with bipartition (A, B).

Proof of Theorem 1. Let G be a $192(d+1)$-regular graph with girth g and H be a maximum bipartite subgraph of G. Then according to Theorem 3, some connected component F of H has average degree at least $96(d+1)$. Let T be a breadth-first search tree in F, and let L_{i} is the set of vertices of T at distance i from the root. Then, for some i, the subgraph F_{i} of F induced by
*Corresponding author

This is an Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
$L_{i} \cup L_{i+1}$ has average degree at least $48(d+1)$. By Lemma $4, F_{i}$ contains a θ-graph Γ which contain a cycle of length at least $d^{\lfloor(g-1) / 2\rfloor}+2$. Let T^{\prime} be the minimal subtree of T whose set of end vertices is $V(\Gamma) \cap L_{i}$. Then there is a partition $\left(A, B^{*}\right)$ from $V(\Gamma) \cap L_{i}$, so all $A B^{*}$-paths in T^{\prime} go through the root and have the same length, say $2 h$.
Let $B=V(\Gamma) \backslash A$. By Lemma 5, there exist $A B$-paths in Γ of all even lengths in $\left\{1,2, \ldots, d^{\lfloor(g-1) / 2\rfloor}+2\right\}$. Since they have an even length, each such path is actually an $A B^{*}$-path, and the union of this path with the unique subpath of T^{\prime} of length $2 h$ joining its endpoints is a cycle. Therefore $C(G)$ contains $d^{\lfloor(g-1) / 2\rfloor}$ consecutive even integers, as required.

ACKNOWLEDGMENTS

The authors would like to thank reviewers for their helpful comments.

REFERENCES

Alon, N., Hoory, S. \& Linial, N. (2002). The Moore bound for irregular graphs. Graphs and Combinatorics, 18(1), 53-57.
Bannai, E. \& Ito, T. (1973). On finite Moore graphs. J. Fac. Sci. Tokyo Univ, 20(191-208), 80.
Bondy, J. A. \& Simonovits, M. (1974). Cycles of even length in graphs. Journal of Combinatorial Theory, Series B, 16(2), 97-105.
Erdös, P. (1993). Some of my favorite solved and unsolved problems in graph theory. Quaestiones Mathematicae, 16(3), 333-350.
Erdős, P., Faudree, R. J., Rousseau, C. C. \& Schelp, R. H. (1999). The number of cycle lengths in graphs of given minimum degree and girth. Discrete Mathematics, 200(1-3), 55-60.
Erdos, P. \& Hajnal, A. (1969). On topological complete subgraphs of certain graphs. Annales Univ. Sci. Budapest, 7, 193-199.
Groenland, C., Johnston, T., Kupavskii, A., Meeks, K., Scott, A. \& Tan, J. (2022). Reconstructing the degree sequence of a sparse graph from a partial deck. Journal of Combinatorial Theory, Series B, 157, 283-293.
Pósa, L. (1965). On independent circuits contained in a graph. Canadian Journal of Mathematics, 17, 347-352.
Raymond, J.-F. \& Thilikos, D. M. (2017). Recent techniques and results on the Erdős-Pósa property. Discrete Applied Mathematics, 231, 25-43.
Sudakov, B. \& Verstraëte, J. (2007). Cycle lengths in sparse graphs. ArXiv Preprint ArXiv:0707.2117.

*Corresponding author

