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Abstract. Let 𝐺 be a 𝑑 −reguler graph with girth 𝑔. Set of cycle length in Graf 𝐺 is denoted by 𝐶(𝐺). 

Graph 𝐺 is a sparse graph if and only if  
2.|𝐸|

|𝑉|(|𝑉|−1)
<

1

2
. Furthermore, it was obtained the number of 

cycle length of sparse 𝑑 −reguler graph which denoted |𝐶(𝐺)| is 𝛺(𝑑⌊(𝑔−1)/2⌋). 

 

INTRODUCTION 

Let 𝐶(𝐺) denote the set of lengths of cycles in a graph G. According to (Erdös, 1993), every graph 

with minimum degree three contains a cycle with length 2𝑛, which 𝑛 is the number of vertices in 𝐺. 

An advance research was initiated by (Erdős et al., 1999), it was founded that the lower bound of 

cycle lengths of graph with minimum degree 𝑘 and girth 𝑔 is 𝑐𝑘𝑔/8. The recent research was done by 

(Groenland et al., 2022; Sudakov & Verstraëte, 2007) which shows that sparse graph with average 

degree 𝑑 and girth 𝑔 contains cycle with lengths 𝛺(𝑑⌊(𝑔−1)/2⌋).  

Since 𝑛 −vertex graphs with average degree 𝑑 may have girth at least log𝑑−1 𝑛, we cannot guarantee 

𝐶(𝐺) for sparse graph contains integer from a finite set. (Erdos & Hajnal, 1969) conjectured 

∑
1

𝑙
𝑙∈𝐶(𝐺)

= 𝛺(log 𝑑) 

whenever 𝐺 has average degree 𝑑. (Here and throughout the paper the notation 𝑎𝑑 =  𝛺(𝑏𝑑) means 

that there is an absolute constant 𝐶 such that 𝑎𝑑 ≥ 𝐶𝑏𝑑 when 𝑑 → ∞). Therefore, if a graph does not 

have too many short cycles, then it must have many long cycles. Thus, the aim of this paper is to find 

the lower bound of |𝐶(𝐺)| when 𝐺 is a 𝑑 −reguler graph with girth 𝑔. The condition of girth 𝐺 will 

closely related to the condition of its sparsity. 

 

LITERATURE REVIEW 

PRELIMINARIES 

Let 𝐺 be a 𝑑 −reguler graph with girth 𝑔. 𝐶(𝐺) is the set of cycle length in graph 𝐺. The example of 

regular graph is Moore Graph (Bannai & Ito, 1973). Moore Graph is a graph with minimum degree 𝑑 

and girth 𝑔. The number of vertices in Moore Graph states  

|𝑉(𝐺)| ≥ {
1 + 𝑑 + 𝑑(𝑑 − 1) + ⋯ + 𝑑(𝑑 − 1)⌊

𝑔−1
2 ⌋−1

            𝑖𝑓 𝑔 𝑖𝑠 𝑜𝑑𝑑

2 (1 + 𝑑 + 𝑑(𝑑 − 1) + ⋯ + 𝑑(𝑑 − 1)⌊
𝑔−1

2
⌋−1

)     𝑖𝑓 𝑔 𝑖𝑠 𝑒𝑣𝑒𝑛
 

An open neighborhood of 𝑋 ⊂ 𝑉(𝐺) in graph 𝐺 is defined by 

𝜕𝑋 = {𝑦 ∈ 𝑉(𝐺)\𝑋 | ∃𝑥 ∈ 𝑋: {𝑥, 𝑦} ∈ 𝐸(𝐺)} 

The open neighborhood of 𝑋 is a set of vertices which is not in 𝑋 and adjacent to at least one vertex of 

𝑋. The 𝑑 −core of graph 𝐺 (if exists), is a subgraph which obtained by omitting vertices which degree 

is 𝑑 − 1. Thus, if a graph has average degree 2𝑑, then it has a 𝑑 −core. 

Theorem 1. Let 𝐺 be a −reguler graph with girth 𝑔. Then 𝐶(𝐺) contains Ω(𝑑⌊(𝑔−1)/2⌋) consecutive 

even integers. 

The aim of this paper is to prove Theorem 1 by using these following Lemma and Theorem. 
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RESULT 

Lemma 2. Let 𝐺 is 6(𝑑 + 1) −regular graph with girth 𝑔, then for every 𝑋 ⊂ 𝑉(𝐺) with maximum 

size 
1

3
𝑑[(𝑔−1)/2],  

|𝜕𝑋| > 2|𝑋| 

Proof. Suppose |𝜕𝑋| ≤ 2|𝑋| for some 𝑋 ⊂ 𝑉(𝐺). We will show that |𝑋| >
1

3
𝑑[(𝑔−1)/2]. Let 𝐻 be a 

subgraph of 𝐺 which spanned by 𝑌 = 𝑋⋃𝜕𝑋. Because 𝜕𝑋 is a set of vertices which are not in 𝑋, 

therefore 𝜕𝑋 and 𝑋 are mutually exclusive. Thus, 

     |𝑌| = |𝑋| + |𝜕𝑋| 
|𝜕𝑋| = |𝑌| − |𝑋| 

The first argumentation in proving this lemma, we have |𝜕𝑋| ≤ 2|𝑋|. So, we obtain 

|𝑌| − |𝑋| ≤ 2|𝑋| 
      |𝑌| ≤ 3|𝑋| 
From Theorem of the number of edge related to the degree of a graph, we obtain  

𝑒(𝐻) ≥
1

2
∑ 𝑑(𝑥)

𝑥∈𝑋

≥
1

2
6(𝑑 + 1)|𝑋| ≥ 3(𝑑 + 1)|𝑋| 

By substituting  

|𝑌| ≤ 3|𝑋| 
1

3
|𝑌| ≤ |𝑋| 

We obtain 

𝑒(𝐻) ≥
1

2
∑ 𝑑(𝑥)

𝑥∈𝑋

≥
1

2
6(𝑑 + 1)|𝑋| ≥ 3(𝑑 + 1)|𝑋| ≥ (𝑑 + 1)|𝑌| 

Thus, 𝐻 contain a subgraph Γ with minimum degree 𝑑 + 1. 
By applying Moore Bound (Alon et al., 2002), we obtain 

|𝑌| ≤ 3|𝑋| 

3|𝑋| ≥ |𝑌| ≥ |𝑉(Γ)| > 1 + ∑ 𝑑(𝑑 − 1)𝑖

𝑘−1

𝑖=0

 

3|𝑋| ≥ |𝑌| ≥ |𝑉(Γ)| > 1 + 𝑑 ∑(𝑑 − 1)𝑖

𝑘−1

𝑖=0

 

Because the minimum degree is 𝑑 + 1, by substituting 𝑑 + 1 we obtain 

3|𝑋| ≥ |𝑌| ≥ |𝑉(Γ)| > 1 + (𝑑 + 1) ∑ (𝑑 + 1 − 1)𝑖

𝑖<⌊
𝑔−1

2 ⌋ 

 

3|𝑋| ≥ |𝑌| ≥ |𝑉(Γ)| > 1 + (𝑑 + 1) ∑ 𝑑𝑖

𝑖<⌊
𝑔−1

2
⌋ 

 

3|𝑋| ≥ |𝑌| ≥ |𝑉(Γ)| > 1 + (𝑑 + 1) ∑ 𝑑𝑖

𝑖<⌊
𝑔−1

2 ⌋ 

> 𝑑⌊(𝑔−1)/2⌋ 

Thus 

3|𝑋| > 𝑑⌊(𝑔−1)/2⌋ 

|𝑋| >
1

3
𝑑⌊(𝑔−1)/2⌋ 

as required. 

Theorem 3. For every graph 𝐺 48(𝑑 + 1) −regular with girth 𝑔, |𝐶(𝐺)| ≥
1

8
𝑑⌊(𝑔−1)/2⌋. 

Proof. Let 𝐻 be a maximum bipartite subgraph of 𝐺, which contain at least half of the edges of 𝐺. 

Then, some connected component 𝐹 in 𝐻 is a graph with average degree at least 24(𝑑 + 1). Let 𝑇 be 

a breadth first search tree in 𝐹, and let 𝐿𝑖 denote the set of vertices of 𝑇 at distance 𝑖 from the root of 
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𝑇. Since 𝐹 is bipartite, so there is no edge of F joins two vertices of 𝐿𝑖. 𝑒(𝐿𝑖 , 𝐿𝑖+1) denote the number 

of edges of 𝐹 with one endpoint in 𝐿𝑖 and one endpoint in 𝐿𝑖+1. Accordingly,  

∑ 𝑒(𝐿𝑖 , 𝐿𝑖+1)

𝑖

= 𝑒(𝐹) 

By Theorem of the number of edge related to the degree of a graph, we obtain 

∑ 𝑒(𝐿𝑖 , 𝐿𝑖+1)

𝑖

= 𝑒(𝐹) ≥
1

2
24(𝑑 + 1)|𝑉(𝐹)| 

∑ 𝑒(𝐿𝑖 , 𝐿𝑖+1)

𝑖

= 𝑒(𝐹) ≥ 12(𝑑 + 1)|𝑉(𝐹)| 

∑ 𝑒(𝐿𝑖 , 𝐿𝑖+1)

𝑖

= 𝑒(𝐹) ≥ 6(𝑑 + 1) ∑|𝐿𝑖| + |𝐿𝑖+1|

𝑖

 

 

Thus, 𝐿𝑖 ∪ 𝐿𝑖+1 has average degree at least 12(𝑑 + 1). Then, we obtain subgraph 𝐹𝑖 ⊂ 𝐹. Then, 𝐹𝑖 

contain subgraph Γ with average degree 6(𝑑 + 1). By Lemma 2, we obtain |𝜕𝑋| > 2|𝑋| for every 

𝑋 ⊂ 𝑉(𝐺), has maximum size 
1

3
𝑑⌊(𝑔−1)/2⌋. By Posa’s Lemma (Pósa, 1965; Raymond & Thilikos, 

2017), Γ contain path 𝑃 with length 𝑑⌊(𝑔−1)/2⌋. Let 𝑇′ be a minimal subtree of 𝑇 whose set of end 

vertices is 𝑉(𝑃) ∩ 𝐿𝑖. The minimality of 𝑇′ ensures that it branches at the root. Let 𝐴 be the set of 

vertices in 𝑉(𝑃) ∩ 𝐿𝑖 in one of these branches and let 𝐵 = (𝑉(𝑃) ∩ 𝐿𝑖)\𝐴. So, 𝐴, 𝐵are not empty sets 

and path from 𝐴 to 𝐵 through its root have the same length, says 2ℎ.  

We assume,  

|𝐵| ≥ |𝐴| 

|𝐵| ≥
1

4
|𝑃| 

1

2
|𝐵| ≥

1

8
|𝑃| 

If 𝑎 is a vertices in 𝐴, therefore, there is exist subpath 𝑃 from 𝑎 to a vertices in 𝐵 of at least 
1

8
|𝑃| 

different lengths. For any path 𝑄, there is a unique subpath 𝑅 of 𝑇′ through the root joining the 

endpoints of 𝑄, so that 𝑄 ∪ 𝑅 is a cycle in G. Since all 𝑅 have the same length 2ℎ, we obtain  

|𝐶(𝐺)| ≥
1

8
𝑑⌊(𝑔−1)/2⌋ 

Lemma 4. Let 𝐺 be a 48(𝑑 + 1) −regular graph with girth 𝑔, where 𝑑⌊(𝑔−1)/2⌋ ≥ 6. Then, 𝐺 contains 

𝜃 −graph which contain a cycle of length at least 𝑑⌊(𝑔−1)/2⌋ + 2. 

Proof. Let the path 𝑃, tree 𝑇′ and set 𝐿𝑖 be defined as in the proof of Theorem 3. Since  𝑑⌊(𝑔−1)/2⌋ ≥
6, we have |𝑉(𝑃) ∩ 𝐿𝑖| ≥ 3. Let 𝑄 ⊂ 𝑃 be a path of length at least |𝐸(𝑃)| − 2 with endpoints in 𝐿𝑖. 

Because |𝑉(𝑄) ∩ 𝐿𝑖| ≥ 3, therefore 𝑄 has an interior vertex in 𝐿𝑖. If 𝑅 is a path in 𝑇′ joining the 

endpoints of 𝑄, then 𝑄 ∪ 𝑅 form a cycle of length at least 𝑑⌊(𝑔−1)/2⌋ + 2. So, for some path 𝑆 ⊂ 𝑇′ 
from the root of 𝑇′ to an interior vertex of 𝑄 in 𝐿𝑖, the subgraph 𝑄 ∪ 𝑅 ∪ 𝑆 is the required 𝜃 −graph. 

 

It is convenient to define an 𝐴𝐵 −path in a graph 𝐺 to be a path with one endpoint in 𝐴 and one 

endpoint in 𝐵, where 𝐴, 𝐵 ⊂  𝑉 (𝐺). This following Lemma is obtained by (Bondy & Simonovits, 

1974). 

 

Lemma 5. Let 𝛤 be a 𝜃 −graph and let (𝐴, 𝐵) be a nontrivial partition of 𝑉 (𝛤). Then 𝛤 contains 

𝐴𝐵 −paths of all lengths less than |𝑉 (𝛤)| unless 𝛤 is bipartite with bipartition (𝐴, 𝐵). 

 

Proof of Theorem 1. Let 𝐺 be a 192(𝑑 + 1) −regular graph with girth 𝑔 and 𝐻 be a maximum 

bipartite subgraph of 𝐺. Then according to Theorem 3, some connected component 𝐹 of 𝐻 has 

average degree at least 96(𝑑 + 1). Let 𝑇 be a breadth-first search tree in 𝐹, and let 𝐿𝑖 is the set of 

vertices of 𝑇 at distance 𝑖 from the root. Then, for some 𝑖, the subgraph 𝐹𝑖 of 𝐹 induced by 
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𝐿𝑖 ∪ 𝐿𝑖+1 has average degree at least 48(𝑑 + 1). By Lemma 4, 𝐹𝑖 contains a 𝜃 −graph 𝛤 which 

contain a cycle of length at least  𝑑⌊(𝑔−1)/2⌋ + 2. Let 𝑇′ be the minimal subtree of 𝑇 whose set of end 

vertices is 𝑉(Γ) ∩ 𝐿𝑖. Then there is a partition  (𝐴, 𝐵∗) from  𝑉(Γ) ∩ 𝐿𝑖, so all 𝐴𝐵∗ −paths in 𝑇′  go 

through the root and have the same length, say 2ℎ.  

Let 𝐵 = 𝑉(Γ)\𝐴. By Lemma 5, there exist 𝐴𝐵 −paths in 𝛤 of all even lengths in 

{1, 2, … , 𝑑⌊(𝑔−1)/2⌋ + 2}. Since they have an even length, each such path is actually an 𝐴𝐵∗ −path, 

and the union of this path with the unique subpath of 𝑇′ of length 2ℎ joining its endpoints is a cycle. 

Therefore 𝐶(𝐺) contains𝑑⌊(𝑔−1)/2⌋ consecutive even integers, as required. 
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