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Abstract. The 𝑞-gradient method used a Yuan step size for odd steps, and geometric 

recursion as an even step size (𝑞-GY). This study aimed to accelerate convergence to a 

minimum point by minimizing the number of iterations, by dilating the parameter 𝑞 to 

the independent variable and then comparing the results with three algorithms namely, 

the classical steepest descent (SD) method, steepest descent method with Yuan Steps 

(SDY), and 𝑞-gradient method with geometric recursion (𝑞-G). The numerical results 

were presented in tables and graphs. The study used Rosenbrock function 𝑓(𝒙) =
(1 − 𝑥1)

2 + 100(𝑥2 − 𝑥1
2)2 and determined 𝜇 = 1, 𝜎0 = 0.5, 𝛽 = 0.999, the starting 

point (𝒙𝟎) with a uniform distribution on the interval 𝒙𝟎= (-2.048, 2.048) in ℝ2, with 

49 starting points (𝒙𝟎) executed using the Python online compiler on a 64bit core i3 

laptop. The maximum number of iterations was 58,679. Using tolerance limits as 

stopping criteria is 10-4 and the inequality 𝑓(𝑥∗) > 𝑓 to get numerical results. 𝑞-GY 

method downward movement towards the minimum point was better than the SD and 

SDY methods while the numerical results of the Rosenbrock function showed good 

enough performance to increase convergence to the minimum point. 

 

INTRODUCTION 

Optimization is a branch of applied mathematics that studies the process of obtaining the best decision 

that gives the maximum or minimum value of a function. Optimization problems can be categorized into 

constrained optimization and unconstrained optimization. Optimization problems can be solved 

analytically or numerically. For unconstrained optimization of nonlinear functions with many variables 

requires a numerical method to solve this problem. Numerical methods are iterative and one of them is 

the steepest descent method or also called the gradient descent method. This method is also one of the 

simplest minimization methods for unconstrained optimization problems, because it uses a negative value 

gradient to find the direction (gradient). In terms of finding the direction (gradient) does not require a 

second derivative, resulting in low computational costs and low matrix storage requirements. For a 

function 𝑓 which is defined ℝ𝑛and has a real value, namely 𝑓:ℝ𝑛 → ℝ the method of finding the 

minimal form of the nonlinear equation𝑓(𝒙) = 0, for 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) introduced by (Mitrinovic & 

Keckic, 1984) using gradients. The disadvantage of steepest descent is that it has a slow convergence to 

reach the optimal value, due to the zigzag step (Silalahi et al., 2015). For this reason, there is a need for 

development, using the Yuan step size as a step search, also shown by (Silalahi et al., 2015) and 𝑞-

calculus called 𝑞-Jackson by (Jackson, 1909) he provides generalizations from special numbers, 

sequences, functions, 𝑞-integral and used in this research is 𝑞-derivative. (Soterroni et al., 2011) 

introduced the 𝑞 version for the steepest descent method, called the q-gradient method or the (𝑞-G) 

method which is a tool to solve the global minima unconstrained problem. The main idea of the method 

(𝑞-G) is to use a negative q-gradient objective function that is used as a direction finding, the q-gradient is 
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calculated based on the q-Jackson and requires a dilation with the parameter 𝑞 which is a real number not 

equal to. By using the Rosenbrock function, the algorithm will be analyzed in the form of numerical 

results and graphs of the movement of the function to the minimum point. 

It can be seen in Figure 1 below 𝑞1 and  𝑞2the sign of the 𝑞 derivative is positive and the q-G method 

will move to the left as did the steepest descent method. However, for 𝑞3 the sign of the negative q 

derivative could potentially allow the q-G method to move in the right direction, towards the global 

minimum 𝑓. 

 
Figure 1. Point movement with 𝑞 dilation (Soterroni et al., 2011) 

 In this paper, we are interested in developing a steepest descent method to accelerate convergence 

by combining the q-G method with the Yuan and geometric recursion step size (q-GY). 

 

q- Derivative 

 

𝑓(𝑥) is a real-valued continuous function with a single variable, the q-derivative of  f is given as 

follows 

𝐷𝑞𝑓(𝑥) =
𝑓(𝑥) − 𝑓(𝑞𝑥)

(1 − 𝑞)𝑥
 

 

With 𝑥 ≠ 0 dan 𝑞 ≠ 1. And in the finite case, 𝑞 = 1, the q-derivative is equal to the classical 

derivative with 𝑓 differentiable at x. The parameter q is taken from the interval 0 < 𝑞 < 1, but 𝑞 can be a 

real number different from 1. For a real-valued continuous function is differentiable at 𝑥 = 0, the 

derivative of 𝑞 can be given by 

 

𝐷𝑞𝑖 , 𝑥𝑖𝑓(𝒙𝑖)  

=

{
  
 

  
 
𝑓(𝑥1, … , 𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑛) − 𝑓(𝑥1, … , 𝑥𝑖−1, 𝑞𝑖𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑛)

(1 − 𝑞𝑖)𝑥𝑖
, 𝑥 ≠ 0 𝑞 ≠ 0

𝜕𝑓

𝜕𝑥𝑖
(𝑥1, … , 𝑥𝑖−1, 0, 𝑥𝑖+1, … , 𝑥𝑛),           𝑥𝑖 = 0

𝜕𝑓

𝜕𝑥𝑖
(𝑥1, … , 𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑛), 𝑞𝑖 = 0

  

For a real-valued continuous function of n variables 𝑓(𝑥), the gradient vector is a vector of n first-

order partial derivatives of f provided that the function has first-order partial derivatives with respect to all 

independent variables 𝒙𝒊 =( 𝑖 = 1, 2,· · · , 𝑛). Similarly, the gradient vector 𝑞 is the vector of n first-order 

partial derivatives of f. Before introducing the gradient vector 𝑞, it is convenient to define the first-order 

partial derivative 𝑞 of a real-valued continuous function of n variables with respect to the variable 𝑥𝑖. 
∇𝑞𝑓(𝒙) = [𝐷𝑞1, 𝑥1𝑓(𝒙1), 𝐷𝑞2, 𝑥2𝑓(𝒙2), … , 𝐷𝑞𝑛, 𝑥𝑛𝑓(𝒙𝑛)]  

and in limit, 𝑞i →1 , for all i =(1,..,n ) [3] 
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q-Gradient Method 

A general optimization strategy is to consider an initial set of independent variables 𝒙𝟎  and apply the 

iterative procedure given by 𝒙𝒌 = 𝒙𝒌 −1 +𝛼𝑘𝒔𝒌, where 𝑘 is the iteration number, 𝑥 is the variable vector, 

𝛼 is the step length and 𝑠 is the search direction vector. This process continues until no additional 

reduction in the value of the objective function can be made or the solution point has been approached 

with sufficient accuracy. In the steepest descent method, the search direction 𝑠𝑘 is given by the negative 

gradient vector Because it uses a negative gradient as the search direction, it is also known as the gradient 

method (Djordjevic, 2019). at the point  𝑥𝑘 , 𝑓 (𝑥𝑘), and the step length 𝑘 can be found by a one-

dimensional search performed in the 𝑠𝑘 direction. Similarly, the search direction for the 𝑞 −steepest 

descent method is given by the negative gradient vector 𝑞 at the 𝑥𝑘 , 𝑞 𝑓 (𝑥𝑘). 
At the start of the iterative procedure, 𝜎𝑘  ≠ 0 with 𝜇= 1, this strategy implies that the parameter 𝑞𝑖 

can be any positive real number with more occurrences around the mean, but with the same probability of 

occurring in the interval (0,1) or (1,∞) . At that point, the gradient vector 𝑞 can point in any direction. 

This gives the method the possibility of looking in other directions different from the steepest descent 

direction and escaping the local minimum for multimodal functions, or reducing the zigzag motion to the 

minimum for poorly scaled functions. At the end of the iterative procedure, when 𝜎𝑘 tends to 0 with 𝜇 = 

1, the parameter  𝑞𝑖tends to 1 and the gradient vector q tends to the regular gradient vector. In other 

words, when 𝜎 →  0 this strategy makes the 𝑞 −steepest descent method reduces to the classical steepest 

descent method. The optimization algorithm for the classic 𝑞 −steepest descent method is given below. 

 

q-Steepest Descent Algorithm 

 

Step 1: at random 𝑥0  ∈ ℝ
𝑛, set 𝜇 = 1, take 𝜎0 and  𝛽.  

Step 2: Set 𝑘 ∶=  1.  
Step 3: Generate the parameter q = (𝑞1, . . . , 𝑞𝑖 , . . , 𝑞𝑛) with log-normal distribution or a 

gaussian distribution in  (Gouvêa et al., 2016; Soterroni et al., 2015)  with  𝜇 and 

standard deviation  𝜎𝑘.  

Step 4: Calculate the search direction 𝑠𝑘 = −∇𝑓(𝑥𝑘).  
Step 5: Find the step length 𝛼𝑘 with geometric recursion  

Step 6: Calculate 𝑥𝑘+1 + 1 =  𝑥𝑘  + 𝛼𝑘𝑠𝑘  

Step 7: If the stopping criteria is reached, then stop; else, continue with step 8.  

Step 8: Subtract the standard deviation 𝜎𝑘 =  𝛽. 𝜎𝑘−1  and  𝛼𝑘 = 𝛽. 𝛼𝑘−1,  

Step 9: Set 𝒌 ∶=  𝒌 + 𝟏, and go to step 3. (Soterroni et al., 2011) 

 

Yuan Step Size 

The steepest descent method is the simplest iterative optimization technique that does not need to 

calculate the Hessian of the objective function, but has a slow convergence, the theoretical convergence 

rate was first studied by Hestenes and Stiefel in 1952 where it was recognized that the degree of 

convergence is highly dependent on the value distribution. The eigenvalues of a positive definite matrix 

(Mishra et al., 2021), the eigenvalues are denoted by , which is the magnitude of the change in vector 

length that occurs, in the steepest descent method the small step length makes the gradient descent 

converge to the minimum very slowly (Watt et al., 2016). 

(Yuan, 2006) introduced the Yuan method in his original paper using alternating step sizes as in the 

AM method. However, the Yuan method uses a new step size. Yuan's method uses exact line search on 

odd iterations, and then uses the following step size on even iterations (Silalahi et al., 2015): 
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𝛼𝑘 =

{
  
 

  
 

𝑔𝑘
𝑇𝑔𝑘

𝑔𝑘
𝑇𝐴𝑔𝑘

, 𝑖𝑓  𝑘 𝑜𝑑𝑑

2

√(
1

𝛼2𝑘−1
−

1
𝛼2𝑘

)
2

+
4‖𝑔2𝑘‖2

‖𝑠2𝑘−1‖
2 +

1
𝛼2𝑘−1

+
1
𝛼2𝑘

, 𝑖𝑓  𝑘 𝑒𝑣𝑒𝑛 

 

Rosenbrock function 

The Rosenbrock function is a unimodal function having an optimal solution 0 to  (0, 0, …, 0) 

(Soterroni et al., 2015) 𝑓(𝒙) = (1 − 𝑥1)
2 + 100(𝑥2 − 𝑥1

2)2  dengan 𝜇 = 1, 𝜎0 = 0.5 as a variable to find 

the parameter 𝑞 , 𝛽 = 0.995 as a reduction factor to find the standard deviation value in each iteration at 

the interval 𝑥0= (-2.048, 2.048). The following is a graph of the Rosenbrock function and the contours of 

the Rosenbrock function: 

 

 

a b 

  

Figure 2. Rosenbrock Function Form (a) and Contour (b) (Shang & Qiu, 2006)     

Shows the 2-dimensional contour of the Rosenbrock function which has one global 

minimum at 𝑥𝑒𝑞. 

 

q-GY Algorithm 

The q-GY algorithm is an algorithm with q-Jackson direction search or also called q-

gradient with Yuan and geometric recursion step size (q-GY), following the q-GY 

algorithm, determined starting  𝑥0, 𝜎0 > 0, 𝛽 𝜖 (0,1) or  0 < 𝛽 < 1. 

Step 1 : Set k=0 

Step 2 : 𝑥∗ = 𝑥𝑘 

Step 3 : If the stopping criteria is not reached, then continue: 

Step 4 : Make 𝒒k𝒙k of the Gaussian distribution with 𝜎𝑘 and  𝜇𝑘 

Step 5 : Calculate vector 𝑞- gradient ∇𝑓(𝒙𝑘) 

Step 6 : Determine 𝒅𝑘 = −∇𝑞𝑓(𝒙
𝑘) (Soterroni et al., 2015)  

Step 7 : Calculate 𝛼𝑘 with Yuan step size 

𝛼𝑘 =

{
 
 

 
 
(𝑑𝑘)𝑇𝑑𝑘

(𝑑𝑘)𝑇𝐴𝑑𝑘
, 𝑖𝑓  (𝑘, 4) = 0 𝑜𝑟  3 𝑒𝑣𝑒𝑛

2

√(
1

𝛼𝑘−1
−
1

𝛼𝑘
)
2
+
4‖𝑑𝑘‖

2

‖𝒔‖2
+

1

𝛼𝑘−1
+
(𝑑𝑘)𝑇𝐴𝑑𝑘

(𝑑𝑘)𝑇𝑑𝑘

, 𝑜𝑡ℎ𝑒𝑟𝑠 (Silalahi et al., 2015) 

𝒔 = 𝒙𝑘 − 𝒙𝑘−1 = −𝛼𝑘−1𝒅𝑘−1 

Step 8 : Do the following iteration 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘 . 𝑑𝑘 
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Step 9 : if 𝑓(𝑥𝑘+1) < 𝑓(𝑥∗), set 𝑥∗ = 𝑥𝑘+1 

Step 10 : Define 𝜎𝑘+1 = 𝛽. 𝜎𝑘  (Soterroni et al., 2015) 

Step 11 : Set 𝑘 = 𝑘 + 1 

Step 12 : And back again to step (3.1) 

 

RESEARCH METHODS 

In this study, the search for the direction of the q-gradient with the Jackson derivative or also called 

the (q-G) method was carried out, namely the dilatation of the q parameter to the independent variable by 

comparing the numerical results of three algorithms, namely the classical steepest descent (SD) method, 

the steepest descent (SDY) method with steps Yuan (Yuan, 2006), q-gradient method with geometric 

recursion (Gouvêa et al., 2016). The method in this study used a direction search using the 𝑞-gradient 

method and a Yuan or q-GY step size, also included an initial search with geometric recursion. The 

numerical results were in the form of tables and graphs of convergence to see the improvement of the q-

GY method on the level of convergence and the number of iterations, using a unimodal function, namely 

the Rosenbrock function at ℝ2with 49 starting points (𝒙𝟎)and a predetermined limit on the function. Run 

using Python online compiler on a 64bit core i3 laptop to see numerical results. For the Rosenbrock 

function 𝑓(𝒙) = (1 − 𝑥1)
2 + 100(𝑥2 − 𝑥1

2)2  given = 1, 𝜎0 = 0.5, 𝛽 = 0.999 , the starting point was 

returned from the interval 𝑥0= (-2.048, 2.048) using a uniform distribution on the selection of starting 

points (Soterroni et al., 2011). The maximum number of iterations in python was 58,679 or 2MB and used 

a tolerance limit as the stopping criteria, which is 10-4 in 10 iterations of search, while 𝑓(𝒙𝑘+1) > 𝑓(𝒙∗) 
stopping criteria was used to find minimum point in the algorithm. 

Data Input: 

𝒙0= initial point 

𝜎0 > 0 the reduced standard deviation with the parameter 𝛽 𝜖 (0,1)  in the iteration 

process 

𝑞𝑘= parameter whose value is close to 1, or q→1 is searched with a Gaussian 

distribution 

Gaussian distribution when 𝜇 = 1, 𝜎𝑘 > 0, 𝜇𝑘 = 𝒙𝑘 , 𝜋 = 3.14  𝑜𝑟 
22

7
 

 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒
−
1
2
(
𝒙−𝜇
𝜎
)
2

 

𝒅𝑘 direction finding (downward direction) using q-derivative 

𝛼𝑘  step size k 

𝒈𝑘 = 𝒅𝑘 

A= Hessian matrix 

 

𝐴 =

[
 
 
 
 
𝜕2𝑓

𝜕𝑥𝜕𝑥

𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕2𝑓

𝜕𝑦𝜕𝑥

𝜕2𝑓

𝜕𝑦𝜕𝑦]
 
 
 
 

 

∇𝑞𝑓(𝒙
𝑘) = q-Gradien 

 

https://doi.org/10.33395/sinkron.v7i3.11596


 

Sinkron : Jurnal dan Penelitian Teknik Informatika 
Volume 6, Number 3, July 2022 

DOI : https://doi.org/10.33395/sinkron.v7i3.11596 

e-ISSN : 2541-2019 
 p-ISSN : 2541-044X 

 

 

*Corresponding author 
  

 
This is an Creative Commons License This work is licensed under a Creative 

Commons Attribution-NonCommercial 4.0 International License. 2057 

 

𝐷𝑞𝑖 , 𝑥𝑖𝑓(𝒙𝑖)  

=

{
  
 

  
 
𝑓(𝑥1, … , 𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑛) − 𝑓(𝑥1, … , 𝑥𝑖−1, 𝑞𝑖𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑛)

(1 − 𝑞𝑖)𝑥𝑖
, 𝑥 ≠ 0 𝑞 ≠ 0

𝜕𝑓

𝜕𝑥𝑖
(𝑥1, … , 𝑥𝑖−1, 0, 𝑥𝑖+1, … , 𝑥𝑛),           𝑥𝑖 = 0

𝜕𝑓

𝜕𝑥𝑖
(𝑥1, … , 𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑛), 𝑞𝑖 = 0

 

 

 

∇𝑞𝑓(𝒙) = [𝐷𝑞1, 𝑥1𝑓(𝒙1), 𝐷𝑞2, 𝑥2𝑓(𝒙2), … ,𝐷𝑞𝑛, 𝑥𝑛𝑓(𝒙𝑛)]  

 

 

‖∇𝑞𝑓(𝒙
𝑘)‖ = √(𝐷𝑞1, 𝑥1𝑓(𝒙1))2 + (𝐷𝑞2, 𝑥2𝑓(𝒙2))

2
…+ (𝐷𝑞𝑛, 𝑥𝑛𝑓(𝒙𝑛))2 

 

RESULTS AND DISCUSSION 

The numerical result table for each algorithm showed the number of iterations for each algorithm with 

the Rosenbrock function, and the graph showed the level of convergence to the minimum point. The 

iteration process to see the number of iterations reached the minimum point will continue as long as 

𝑓(𝒙𝑘+1) < 𝒇 but to see the level of convergence of the graph form, 𝑓(𝒙𝑘+1) > 10−4 and only took the 

first 10 iterations, as long as the stopping criteria were not met then 𝑖 = 𝑖 + 1, 𝜎𝑘+1 = 𝛽. 𝜎𝑘   and 𝛽 were 

constant and then returned to the direction finding step. The search for the first 10 iterations aimed to see 

the average 𝑓(𝑥∗) at a certain point, so that in this study 14 starting points were taken randomly among 

49 points evaluated on the Rosenbrock function in intervals (-2.048, 2.048).  

Classical SD method showed iterations will increase, the minimum point was at a large 𝑓 value. The 

Rosenbrock function had one minimum value so that the cause of the increase in 𝑓 was due to the 

increasing search direction in the running algorithm, such as at the point (-2.048, 0.061) there is 𝑓 = 

1717.71 with 1 iteration but at the point (-1.305,-2.048) and (- 1.305, -1.305) shows the opposite result, 

namely 1074 iterations and 1012 iterations with the minimum point being at 𝑓 = 0.839 and 𝑓 = 0.820 

there was also one point with 1 iteration with 𝑓 = 1.209, with the starting point (0.061, 0.061). The SD 

Yuan (SDY) method uses a Yuan step size where in even steps the step size is searched with a line search, 

and odd steps with a yuan step size, produced the same pattern in each iteration, i.e. a small number of 

iterations will produce a minimum point or 𝑓 which large value, on the other hand if the minimum point 

was large, there is a small number of iterations, as in the value of 𝑓 = (-2.048, -1.305) the number of 

iterations is 1234, 𝑓 = (-1.305, -2.048) with1435 iterations and 𝑓= (-1.305, -1.305) with 1352 iterations, 

but there was also 𝑓 = (0.061, 0.061) with 1 iteration. SD and SDY have similar results. The q-G method 

is a method that uses the search for the q-gradient direction and geometric recursion step size as in 

(Gouvêa et al., 2016). Returned to 20 out of 49 points with good results at the minimum point or towards 

the global minimum with small iterations, some of which were at 𝑓 = {(-0.622, 0.061), (-0.622, 0.744), (-

0.622, 2.048) , (1.305, 0.744), (-1.305, 0.744), (-1.305, 1.427), (-1.305, 2.048), (-2.048, -0.622), (-2.048, 

0.061), (-2.048, -0.622) , (-2,048, 0.744), (-2,048, 1,427), ...} returns successive iterations = {4, 5, 2, 8, 4, 

2, 1, 6, 5, 6, 3, 5, ...}, shows that q-G was very effective to reach the minimum point with faster 

convergence than the classical steepest descent (SD) method. The q-GY method uses an even or initial 

step search using geometric recursion with several provisions as mentioned in the research methods 

chapter, if it was adjusted to the research objectives, the results shown were quite satisfactory, it can be 

seen from the 𝑓 values at several starting points 𝒙𝟎= {(-2.048, -2,048), (-2,048),(0.744), (-2,048, 1,427), 

(-2,048, 2,048), (-1.305, 2.048), (-1.305, -1.305)} where 𝑓 and the number of consecutive iterations were 

as follows , 𝑓 = {972,338, 203,162, 117,683, 62.742, 2,922, 3,873}, number of iterations = {93, 91, 91, 
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91, 8, 4}. From the results of the run the q-GY algorithm can be consistent in maintaining the average 

number of iterations at each starting point, but in this study, it was found that the use of the q-GY 

algorithm at several points can be used to accelerate convergence by changing the stopping criteria but 

will show different results. The cause of the instability of the minimum point is due to the stopping 

criteria using the inequality, 𝑓∗ > 𝑓, so the iteration limit depends on the direction that the next step will 

take, each starting point has a different minimum point. The use of q-GY on Rosenbrock should use 

stopping criteria with a tolerance limit to get t𝑜 the minimum point but the results displayed do not 

always decrease. Using a simpler function can more clearly see the convergence to the minimum point. 

Table 1. Recapitulation of the average value of 𝑓(𝑥∗) in each algorithm, there was Classic Steepest 

Descent (SD), Steepest Descent with Yuan step size (SDY), q-Gradien (q-G), q-Gradien with Yuan steps 

(q-GY). Next, the average result 𝑓(𝑥∗) was displayed in the form of a graph showing how each algorithm 

performed in the first 10 iterations in the specified interval. The following table shows a decrease in the 

value of 𝑓 when using the SD, q-G and q-GY methods, while there was an increase and decrease in the 

value of 𝑓 in SDY, more clearly seen in graph 1. 

Table.1 Average 𝑓(𝑥∗) on Rosenbrock functions 

Iterasi SD SDY q-G q-GY 

1 770.4341 770.4341 727.7749 406.1857 

2 766.0104 44906280 685.4928 336.62 

3 761.6505 56594297 647.4297 286.8453 

4 757.3552 3.37E+10 613.0453 267.6328 

5 753.1256 2.78E+09 581.8847 250.8054 

6 748.9636 1.97E+09 553.5622 243.2609 

7 744.8726 5.73E+11 527.749 236.1797 

8 740.8579 1.14E+11 504.163 232.8164 

9 736.9286 1.54E+10 482.5615 229.5677 

10 733.1006 2.47E+10 462.7341 227.9849 

  

Graph 1. Shows the movement of an algorithm towards the minimum point, it can be seen in the SD 

method that the graph decreases starting at iteration 1 with 𝑓 between 750 and 800, and in the 10th 

iteration the point 𝑓 still has not reached the minimum point. In the SDY method, there is no change in 

iterations 1 to 6, but it shows that 𝑓 which has a small value, it is a good step to reach the minimum point 

faster, but in the 7th iteration there is an increase in f, this is due to the stopping criteria used, namely the 

limit a tolerance of 10-4 causes the iteration to continue until it meets the stopping condition. The q-G 

method looked consistently down but was very slow. The initial iteration started with a large 𝑓 value, 

namely 𝑓 more than 6000 so that in the 10th iteration it has not reached the minimum point. The q-GY 

method had a decrease in the value of 𝑓 and was smaller than SD and q-G, but unlike q-G which was 

slow in iteration, the q-GY method in the 10th iteration has 𝑓 which was smaller than the 10th iteration in 

the q-G and SD methods. 

From the graph it can be concluded that the q-GY method had a better performance than the SD 

method on the large 𝑓 and q-G values on the average number of iterations. The SDY method had a fairly 

good performance at the beginning of the iteration but it increased drastically in the 7th iteration, so the 

use of q-GY was more effective. 
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Graph 1. Convergence of the function to the minimum point in the SD, SDY, q-G and 

q-GY. methods 

 

CONCLUSION 

The q-GY method on the Rosenbrock function showed good enough results to accelerate convergence 

by reducing the number of iterations at several starting points, at intervals within the interval (-2.048, 

2.048). From the numerical results, it was found that the q-GY method has a good performance compared 

to classical SD. 

However, to see the performance of the method to achieve faster convergence to the minimum point, it 

would be better to use a simpler function to be able to display results that are in accordance with the 

research objectives or by changing the stopping criteria or using a tolerance limit of 𝑓 <10-4-. The graph 

of the average 𝑓(𝑥∗) of the Rosenbrock function with the SD method reached 1 – 1274 iterations, SDY 

reached 1 – 1702 iterations, q-G reached 1 – 258 iterations, and q-GY reached 1 – 93 iterations. The 

minimum point average was shown in table 4.1.1. The average value of 𝑓(𝑥∗) of the Rosenbrock function 

showed a decrease in the value of 𝑓 when iterations run on the SD, q-G and q-GY methods, while an 

increase in SDY. 

From the numerical results presented in the iteration table and the average 𝑓 value, as well as a graph 

of convergence to the minimum point, it was concluded that the Rosenbrock function with the q-GY 

method could reach the minimum point with fewer iterations than the classical SD method. Improvement 

from the previous method (SD), and the q-G and q-GY methods had better results than the SD, SDY 

method by looking at the average 𝑓 value. 
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