

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 7, Number 2, April 2023

DOI : https://doi.org/10.33395/sinkron.v8i2.12153

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 666

Theoretical Analysis of

Standard Selection Sort Algorithm

Rakhmat Purnomo1, Tri Dharma Putra2*

Universitas Bhayangkara Jakarta Raya
1)rakhmat.purnomo@dsn.ubharajaya.ac.id, 2)tri.dharma.putra@dsn.ubharajaya.ac.id

Submitted : Jan 23, 2023 | Accepted : Feb 22, 2023 | Published : Apr 1, 2023

Abstract: Sorting algorithms plays an important role in the computer

science field. Many applications use sorting algorithm. There are

several sorting algorithms proposed by experts, namely bubble sort,

exchange short, insertion short, heap sort, quick short, merge sort,

standard selection sort. One well-known algorithm of sorting is

selection sort. In this journal, discussion about standard selection sort

is given with thorough analysis. Sorting is very important data

structure concepts that has an important role in memory

management, file management, in computer science in general, and

in many real-life applications. Different sorting algorithms have

differences in terms of time complexity, memory use, efficiency, and

other factors. There are many sorting algorithms exist right now in

the computer science field. Each algorithm has its benefits and

limitations where a trade-off exists between execution time and the

nature of the complexity of the algorithm itself. The method is

theoretical analysis. Three theoretical analyses are given with deep

explanation and analysis. Each with six index arrays, namely with

six data on it. The numbers are sorted in ascending order. Pseudo

code is also given, to understand this algorithm more thoroughly. It

is concluded that this theoretical analysis explained the algorithm

more clearly, by using process iteration by hand.

Keywords: Algorithm, Ascending, Process Iteration, Selection

Sort, Theoretical Analysis

INTRODUCTION

Sorting plays one crucial role in the computer science field. The sorting algorithms are used in a

number of applications. Research on sorting algorithm had occurred since 1950 and continues till today

(Selvi et al., 2021), (Ekowati et al., 2022), (Fagbola & Thakur, 2019). Sorting is one common problem

in data processing. Sorting means, arranging data in ascending or descending order, from random order

of data.

Sorting is very important in the concept of computer science that plays a very important role in

memory management, file management, and other real-life applications (Vilchez, 2020). Different

sorting algorithms have differences in terms of time complexity, memory use, efficiency, and other

factors (Zutshi & Goswami, 2021). There are many sorting algorithms exist right now in the computer

science field. There are bubble sort, heap sort, quick sort, insertion sort, exchange sort, merge sort,

selection sort algorithms in the computer science field. In each algorithm, there are limitations and

benefits, in which a trade-off exists in terms of time execution and the way of the complexity of the

algorithm itself.

There are many sorting algorithms that have been developed to solve the problems of random

data. Increasing the speed of sorting is also important to improve the efficiency and effectivity of sorting

mailto:rakhmat.purnomo@dsn.ubharajaya.ac.id
mailto:tri.dharma.putra@dsn.ubharajaya.ac.id

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 7, Number 2, April 2023

DOI : https://doi.org/10.33395/sinkron.v8i2.12153

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 667

algorithm. To lower the running time and and increase the speed to make it efficient are the main

objective from the experts. The performance of the sorting algorithm is important, since at this moment,

the issue of big data emerged. Data with thousands of records must be sorted, if the speed and efficiency

are not enough then, the creation of new algorithm is needed to solve this problem.

Then, the standard selection algorithm is one major algorithm to be introduced. This algorithm is

a well-known and an easy sorting algorithm to be understood. This algorithm when dealing with small

amounts of data are very useful. But, a lot of data will slow its processing’s time and increase its

iterations. Standard selection sort, actually, has one advantage if we compare it with other sort algorithm

techniques. Eventhough standard selection sort algorithm does a lot of comparisons, this algorithm does

a very few amount of data moving (Akshay Zade, Vinod Mandloi, 2020). Thus, if the data has small

keys but has large data area, then standard selection sorting may be the choice to be the quickest one.

This standard selection sort algorithm is a theoretical analysis. This theoretical analysis gives an

easy example to understand the selection sort algorithm thoroughly. By doing it one by one by hand,

each step at a time. We follow the procedure the algorithm does. This gives an in depth understanding

of this standard selection sort algorithm.

LITERATURE REVIEW

Selection sort is a one known algorithm. Experts have done many researches on selection sort.

Naz Arisha and friends did research in selection sort. He and his team presented the implementation of

selection sort using several programming language, which are Rush, Python and C/C++, and finally,

measured the time complexity (Naz et al., 2021). Katon and his team created Garuda League support

system for esport, with the selection sort method that can be used to facilitate the process of sorting the

position fo the competing team from the number of points obtained in several tables on league official

website (Priambodo & Sasongko Wibowo, 2021). Paingan and his team, proposed an algorithm which

is called selection sort hybrid that is expected to have better performance than the normal selection sort

algorithm. Selection sort hybrid algorithm combines the maximum and minimum searching techniques.

This hybrid algorithm finds maximum and minimum values in the same time to sort from both side of

data (Hardika et al., 2020). Vilchez in his research, proposed and found a remedy on the identified

problems of the selection sort such as unstable sorting and run time complexity by way of modifying

this well-known algorithm.

The new created algorithm was tested using various data and he and his team, verify its

performance. The result of their research was compared with the other available sorting algorithms.

They could validate running time complexity. Their research results showed that the newly created

selection sort algorithm by using distinct and boolean function in the technique of a bidirectional

enhance selection has a significant improvement in terms of run time complexity compared with other

sorting algorithms (Vilchez, 2020). Alotaibi proposed a new in-place sorting algorithm called

OneByOne (OBO) sort. When compared to selection sort and bubble sort algorithm, OBO demonstrated

faster run time at different array sizes. OBO also showed nearly equal performance when compared to

insertion sort algorithm (Alotaibi et al., 2020). Again, Vilchez proposed the modified selection sort

algorithm that utilizes a bidirectional enhanced selection sort algorithm technique.

In their research, Vilchez tried to reduce the number of comparisons and iterations that usually

causes the delay in terms of sorting. The results showed that the modified algorithm has a significant

run time complexity improvement compared with other O(n2) algorithms (Vilchez, 2020). The sorting

algorithm must be effective, less complex, stable, and more efficient. Shabaz proposed SA sorting

algorithm. Shabaz proposed a new approach to operate on both sorted and unsorted lists or records that

can have better execution time on the sorted list. In their research, Shabaz and team, proposed to sort

thousands of records either sorted or unsorted. Here, if the record numbers are small, traditional sorting

approaches can be used. However, in large data, the situation becomes complex. Therefore, an optimized

sorting approach is required. These SA sorting is an approach that developed to check sorted big

numbers as it works better on sorted numbers then quick sort and many others (Shabaz & Kumar, 2019).

Nishant proposed a new algorithm named modified selection sort algorithm, which work on the basis of

selecting two elements at a time, that means selecting two elements simultaneously (Mishra, 2018)

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 7, Number 2, April 2023

DOI : https://doi.org/10.33395/sinkron.v8i2.12153

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 668

METHOD

Here, the structure of this journal are comprises of six sections. The first section is introduction. In

this introduction, the basic idea and the background concept of sorting algorithm is given. The second

section is literature review. Previous works by other experts are explained here. The third section is

research method. In this section, the concept of method is presented thoroughly, especially the pseudo

code of selection algorithm. The fourth section is result. In this section, three theoretical analyses are

presented. With each ascending order of numbers, analyse from random order into ascending order. The

next section is discussion. This section explains the analysis in the previous section. The last section is

conclusion. References are also given in the last part of this journal.

In this research the main method is theoretical analysis on standard selection sort algorithm. Three

analyses are given. Each with the basic idea of ascending the data. Selection sort is a well-known

algorithm to sort numbers, characters, et cetera to be in ascending order or descending order.

Standard selection sort algorithm is an algorithm that based on comparison to sort data. This

algorithm will check an array of elements and will try to find the smallest element in the array. Then

this algorithm exchanges the smallest element with the element in the first position. Then, after finishing

it, it tries to select the smallest element from the unsorted section of the array after carried out the

iteration each. It then exchanges the selected smallest element with the element in the unsorted part of

the array. This process will continue until all elements in the array is sorted fully (Rabiu et al., 2022).

Standard selection sort is the most simple algorithm, but this algorithm is inefficient in large data sets

(Chauhan & Duggal, 2020), (Vilchez, 2019).

Please below find the pseudo code of standard selection sort algorithm, for ascending order of

numbers.

Void selectionsort(int arr[], int n)

{

int i, min, temp;

 for(int i=0;i<n-1;i++)

 {

 min=i;

 for(int j=i+1;j<n;j++)

 {

 if (arr[j]<arr[min])

 min=j;

 }

 temp=arr[min];

 arr[min]=arr[j];

 arr[j]=temp;

 }

}

Sorting algorithm can be differentiated by the following parameters: a)Stability b)Adaptivity

c)Time Complexity d)Space Complexity. Stability means after sorting those similar elements retain their

relativistic positions. Adaptivity means, if it sorts the sequences that are close to sorted faster than

random sequences. Time Complexity means, that the total time required by the program to run to

completion. Space complexity means the number of memory cells which an algorithm needs (Chauhan

& Duggal, 2020).

RESULT

Below is three theoretical analyses. The basic idea is to make the random order of numbers to be

an ascending order. Analyses are given with comparison and indexing of the arrays. Three examples are

given, with random numbers chosen randomly. The analyses comprise of six indexes, which means it is

with six numbers on it. Swapping comments, which indexes are swap, are also given, which one is swap

between indexes.

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 7, Number 2, April 2023

DOI : https://doi.org/10.33395/sinkron.v8i2.12153

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 669

First Theoretical Analysis

Let’s say we have array with indexes from 0 until 5. There are six numbers. Let’s say these numbers

are 6, 45, 34, 20, 100, 38. We want to make this numbers ascending. Please take a look on the 1st process

below to 5th process below. There are five process iterations:

1st Process Iteration

Index: 0 1 2 3 4 5

Number: 6 45 34 20 100 38

Comparison Position

6<45 0

6<34 0

6<20 0

6<100 0

6<38 0

Comment: There is no changing position

Index: 0 1 2 3 4 5

Number: 6 45 34 20 100 38

2nd Process Iteration

Index: 0 1 2 3 4 5

Number: 6 45 34 20 100 38

Comparison Position

45>34 (change index) 2

34>20 3

20<100 3

20<38 3

Comment: Swap data on index 1 with index 3

Index: 0 1 2 3 4 5

Number: 6 20 34 45 100 38

3rd Process Iteration

Index: 0 1 2 3 4 5

Number: 6 20 34 45 100 38

Comparison Position

34<45 2

34<100 2

34<38 2

Comment: There is no changing position

Index: 0 1 2 3 4 5

Number: 6 20 34 45 100 38

4th Process Iteration

Index: 0 1 2 3 4 5

Number: 6 20 34 45 100 38

Comparison Position

45<100 3

45>38 5

Comment: Swap data on index 3 with index 5

Index: 0 1 2 3 4 5

Number: 6 20 34 38 100 45

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 7, Number 2, April 2023

DOI : https://doi.org/10.33395/sinkron.v8i2.12153

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 670

5th Process Iteration

Index: 0 1 2 3 4 5

Number: 6 20 34 38 100 45

Comparison Position

100>45 5

Comment: Swap data on index 4 with index 5

Index: 0 1 2 3 4 5

Number: 6 20 34 38 45 100

So that the end result of the ascending data is 6, 20, 34, 38, 45, and 100.

Second Theoretical Analysis

In this second theoretical analysis, let’s say we have array with indexes from 0 until 5. There are

six numbers. Let’s say these numbers are 89, 40, 33, 56, 99, 39. We want to make this numbers

ascending. Please take a look on the 1st process to 5th process below. There are five process iterations:

1st Process Iteration

Index: 0 1 2 3 4 5

Number: 89 40 33 56 99 39

Comparison Position

89>40 1

40>33 2

33<56 2

33<99 2

33<39 2

Comment: Swap data on index 0 with index 2

Index: 0 1 2 3 4 5

Number: 33 40 89 56 99 39

2nd Process Iteration

Index: 0 1 2 3 4 5

Number: 33 40 89 56 99 39

Comparison Position

40<89 1

40<56 1

40<99 1

40>39 5

Comment: Swap data on index 1 with index 5

Index: 0 1 2 3 4 5

Number: 33 39 89 56 99 40

3rd Process Iteration

Index: 0 1 2 3 4 5

Number: 33 39 89 56 99 40

Comparison Position

89>56 3

56<99 3

56>40 5

Comment: Swap data on index 2 with index 5

Index: 0 1 2 3 4 5

Number: 33 39 40 56 99 89

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 7, Number 2, April 2023

DOI : https://doi.org/10.33395/sinkron.v8i2.12153

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 671

4th Process Iteration

Index: 0 1 2 3 4 5

Number: 33 39 40 56 99 89

Comparison Position

56<99 3

56<89 3

Comment: There is no changing position

Index: 0 1 2 3 4 5

Number: 33 39 40 56 99 89

5th Process Iteration

Index: 0 1 2 3 4 5

Number: 33 39 40 56 99 89

Comparison Position

99>89 5

Comment: Swap data on index 2 with index 5

Index: 0 1 2 3 4 5

Number: 33 39 40 56 89 99

So that the end result of the ascending data is 33, 39, 40, 56, 89, and 99.

Third Theoretical Analysis

In this third theoretical analysis, let’s say we have array with indexes from 0 until 5. There are six

numbers. Let’s say these numbers are 28, 30, 37, 2, 78, 23. We want to make this numbers ascending.

Please take a look on the 1st process to 5th process below. There are five process iterations:

1st Process Iteration

Index: 0 1 2 3 4 5

Number: 28 30 37 2 78 23

Comparison Position

28<30 0

28<37 0

28>2 3

2<78 3

2<23 3

Comment: Swap data on index 0 with index 3

Index: 0 1 2 3 4 5

Number: 2 30 37 28 78 23

2nd Process Iteration

Index: 0 1 2 3 4 5

Number: 2 30 37 28 78 23

Comparison Position

30<37 1

30>28 3

28<78 3

28>23 5

Comment: Swap data on index 1 with index 5

Index: 0 1 2 3 4 5

Number: 2 23 37 28 78 30

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 7, Number 2, April 2023

DOI : https://doi.org/10.33395/sinkron.v8i2.12153

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 672

3rd Process Iteration

Index: 0 1 2 3 4 5

Number: 2 23 37 28 78 30

Comparison Position

37>28 3

28<78 3

28<30 3

Comment: Swap data on index 2 with index 3

Index: 0 1 2 3 4 5

Number: 2 23 28 37 78 30

4th Process Iteration

Index: 0 1 2 3 4 5

Number: 2 23 28 37 78 30

Comparison Position

37<78 3

37>30 5

Comment: Swap data on index 3 with index 5

Index: 0 1 2 3 4 5

Number: 2 23 28 30 78 37

5th Process Iteration

Index: 0 1 2 3 4 5

Number: 2 23 28 30 78 37

Comparison Position

78>37 5

Comment: Swap data on index 4 with index 5

Index: 0 1 2 3 4 5

Number: 2 23 28 30 37 78

So that the end result of the ascending data is 2, 23, 28, 30, 37 and 78.

DISCUSSION

In the first theoretical analysis, we did the procedure step by step and we concluded that, it was

conducted by hand and we got the numbers to be ascending from 6, 45, 34, 20, 100, 38 to be 6, 20, 34,

38, 45, 100. In this first theoretical analysis, we had two ‘there is no changing position’ of index. It was

in the first process and the third process. But we had three swapping numbers. In the second theoretical

analysis, again which conducted by hand, we got the numbers to be ascending from 89, 40, 33, 56, 99,

39 to be 33, 39, 40, 56, 89, 99. Here also, we had one ‘there is no changing position’ of index. This was

in the fourth process. But we had four swapping numbers. In the third theoretical analysis, again which

was conducted by hand, we got numbers to be ascending from 28, 30, 37, 2, 78, 23 to be 2, 23, 28, 30,

37, 78. But, in the third theoretical analysis, we had no ‘there is no changing position’. All of them had

swapping numbers. In all the analysis, the comparisons of numbers between index were decreasing from

five times to be just one time.

CONCLUSION

In this journal, we have learned the standard selection sort algorithm in depth. Based on analysis

above, we can conclude that selection sort is one well-known algorithm in term of sorting characters

and numbers. Based on three theoretical analyses above, it needed five process iterations each to make

the ascending order of numbers. By using indexes from zero to five, which means six numbers, each

needs five process iterations to finish the algorithm. For future works, some comparisons between

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 7, Number 2, April 2023

DOI : https://doi.org/10.33395/sinkron.v8i2.12153

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 673

selection sort algorithm and other sorting algorithm like bubble sort, heap sort, exchange sort, insertion

sort, merge sort, and quick sort, can be analyzed and compared, which one is the most effective and

efficient one. Other future works also can be done by implementing standard selection sort algorithm

with major programming language like C++ and Python

REFERENCES

Akshay Zade, Vinod Mandloi, P. R. B. (2020). Bilateral Selection Sort. International Journal for

Research in Applied Science & Engineering Technology (IJRASET), 8(VII), 230–236.

Alotaibi, A., Almutairi, A., & Kurdi, H. (2020). OneByone (OBO): A fast sorting algorithm. Procedia

Computer Science, 175, 270–277. https://doi.org/10.1016/j.procs.2020.07.040

Chauhan, Y., & Duggal, A. (2020). Different Sorting Algorithms comparison based upon the Time

Complexity. International Journal of Research and Analytical Reviews, 7(3), 114–121.

www.ijrar.org

Ekowati, M. A. S., Nindyatama, Z. P., Widianto, W., & Dananti, K. (2022). Comparative Analysis of

the Speed of the Sorting Method on Google Translate Indonesian-English Using Binary Search.

International Journal of Global Operations Research, 3(3), 108–115.

https://doi.org/10.47194/ijgor.v3i3.167

Fagbola, T. M., & Thakur, S. C. (2019). Investigating the effect of implementation languages and

large problem sizes on the tractability and efficiency of sorting algorithms. International Journal

of Engineering Research and Technology, 12(2), 196–203.

Hardika, E., Atmaja, S., & Pinaryanto, K. (2020). Unjuk Kerja Selection Sort Hybrid. 17–25.

Mishra, P. (2018). A New Approach to Improve Selection Sort by the Modified Selection Sort (MSSA)

and Performance Comparison. 3(March), 677–683.

Naz, A., Nawaz, H., Maitlo, A., & Hassan, S. M. (2021). Implementation of Selection Sort Algorithm

in Various Programming Languages. International Journal of Advanced Trends in Computer

Science and Engineering, 10(3), 2371–2377. https://doi.org/10.30534/ijatcse/2021/1231032021

Priambodo, K., & Sasongko Wibowo, J. (2021). Implementasi Algoritma Selection Sort Untuk

Perangkingan Poin Pada E-Sports Tournament Garuda League. 2020, 978–979.

www.garudaleague.com

Rabiu, A. M., Garba, E. J., Baha, B. Y., & Mukhtar, M. I. (2022). Comparative Analysis between

Selection Sort and Merge Sort Algorithms. Nigerian Journal of Basic and Applied Sciences,

29(1), 43–48. https://doi.org/10.4314/njbas.v29i1.5

Selvi, S., Evert, M. A. C., & Case, B. (2021). Online Copy Available : www.ijmer.in

IMPLEMENTATION OF EFFICIENT SORTING ALGORITHM IN C / C ++. 514(3), 34–40.

Shabaz, M., & Kumar, A. (2019). SA sorting: A novel sorting technique for large-scale data. Journal

of Computer Networks and Communications, 2019. https://doi.org/10.1155/2019/3027578

Vilchez, R. N. (2019). Bidirectional Enhanced Selection Sort Algorithm Technique. International

Journal of Applied and Physical Sciences, 5(1), 28–35. https://doi.org/10.20469/ijaps.5.50004-1

Vilchez, R. N. (2020). Modified Selection Sort Algorithm Employing Boolean and Distinct Function

in a Bidirectional Enhanced Selection Technique. International Journal of Machine Learning

and Computing, 10(1), 93–98. https://doi.org/10.18178/ijmlc.2020.10.1.904

Zutshi, A., & Goswami, D. (2021). Systematic review and exploration of new avenues for sorting

algorithm. International Journal of Information Management Data Insights, 1(2), 100042.

https://doi.org/10.1016/j.jjimei.2021.100042

