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Abstract: School attributes are a series of clothes and accessories that must 

be worn by students in the school environment. The implementation of this 

rule aims to create discipline in students. However, in practice, not all rules 

can be implemented properly because there are still students who violate 

these rules. One of the rules applied at school is the use of complete 

attributes. Currently, attribute checks in schools are done manually or 

through teacher supervision. However, this takes more time, is prone to 

errors, and is inefficient due to the large number of students being checked. 

This study proposes an improved YOLOv5 architecture with the replacement 

of the backbone to MobileNetV3s to detect school attributes. This method 

uses deep learning and the YOLOv5 algorithm to detect in real time the use 

of school attributes by students. In this study, the experimental results show 

that the enhanced YOLOv5 with MobileNetV3s has higher accuracy 

compared to the original YOLOv5. In addition, the improved model is more 

efficient in memory usage and weight file size. With an accuracy result of 

0.912 on mAP50 and a weight size of about 90 MB and a memory usage of 

<7 GB, it shows the potential of replacing the backbone in this technology in 

overcoming attribute detection challenges in schools and can be applied in 

other cases. However, further research is needed to generalize these results 

to other problems. This research also shows that backbone replacement in 

YOLOv5 can affect the accuracy of the model. 

 

Keywords: Backbone Replacement, Computer Vision, Deep Learning, 

MobileNetV3s, School Attribute, YOLOv5. 

 

INTRODUCTION 

Every school must have its own rules or regulations that must be obeyed and carried out by all 

people in the school environment. School rules have a binding and coercive nature. This is a marker of 

student behavior, where the purpose of making school rules is to create discipline in students. However, 

in reality, not all rules can be implemented properly because there are still students who commit 

violations (Komah & Budjang, 2017). To overcome this problem, supervision, and checking of the 

applicable rules must be carried out. One of the rules applied in schools is the use of complete attributes. 

Currently, attribute checking in schools is done manually or through teacher supervision. However, this 

can take more time, is prone to errors, and is inefficient due to the large number of students who are 

checked for attributes. Therefore, accuracy and assertiveness when checking must be improved. 

Moreover, on Monday where every school must hold a ceremony that must be attended by all students, 

and must wear complete school attributes. The ceremony itself usually consists of speeches, singing the 
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national anthem, and raising the national flag. The purpose of the flag ceremony is to foster a sense of 

love for the country and discipline in students starting from an early age. This is so that they are familiar 

with these values and can implement them in their daily lives, both in the school environment, family, 

and society (Audina et al., 2022). Therefore, this ceremony activity must be followed by students 

seriously in following the rules. Following established school policies, students who do not meet the 

requirements of school uniforms with accessories will be subject to disciplinary punishment (Prayitna 

et al., 2022). 

The issues that have been described and coupled with increasingly sophisticated technological 

advances, especially in computer vision and deep learning have recently transformed various fields, 

including object detection and image classification. There are several deep learning algorithms for object 

detection and classification tasks including, Single Shot Detector (SSD), (Faster Recurrent 

Convolutional Neural Network) Faster R-CNN and You Only Look Once (YOLO) (Gelar Guntara, 

2023). the YOLO model or algorithm showed the best performance. The faster RCNN model is the most 

superior among the RCNN variants, but the FPS is not satisfactory because it uses CNN. While the SSD 

is fast, it uses mobile-v1 and this model is lighter, resulting in lower accuracy in terms of precision (Kim 

et al., 2020). In this school attribute detection process using the YOLO algorithm. The YOLO version 

used is YOLOv5. YOLOv5 is known for its real-time object detection capabilities, making it a popular 

choice for applications that require efficient and accurate detection. The YOLO method detection system 

is proven to be faster and more precise for identifying objects in images or images so it is most suitable 

if used for real-time object detection on video (Iskandar Mulyana & Rofik, 2022). Some of the main 

advantages of YOLOv5 compared to previous versions are smaller size, higher speed, higher precision, 

and the use of the ecologically mature PyTorch open-source ML framework(Horvat & Gledec, 2022). 

However, when YOLOv5 is used for specialized detection tasks that require precision and there is a 

need for further improvement, it requires modifications to the architecture or parameters of the YOLOv5 

algorithm itself. The most common thing to modify the architecture of YOLOv5 is to change the 

backbone of YOLOv5. Backbone is a convolutional neural network that is used to take input images 

and extract features from the input images (Horvat & Gledec, 2022). It is a crucial component in 

detecting any object, as it is the main framework in charge of pulling contextual information from the 

input image and transforming it into a more abstract pattern (Benjumea et al., 2021). This backbone 

replacement is done by replacing it with a popular CNN architecture. Examples of CNN architectures 

that are often used for backbone replacement include AlexNet, VGG16, VGG19, ResNet50, ResNet101, 

GoogleNet, Inception-V3, Inception-ResNetV2, and SqueezeNet (Setiawan, 2020). In this school 

attribute detection case, the architecture used to replace the original backbone of YOLOv5 with 

MobileNet V3s architecture. There is a reason for choosing this architecture, which is because this 

architecture is capable of producing high accuracy as well as light weight and can run on computer 

devices with not too high performance (personal computers or laptops) (Hastomo & dan Sudjiran, 2021). 

The MobileNetV3s backbone offers several advantages over the default backbone used in YOLOv5. 

First, MobileNetV3s is specifically designed to be lightweight, making it suitable for resource-

constrained environments. This characteristic is particularly important in applications such as school 

attribute detection, where deployment on edge devices or low-power platforms may be required. 

Secondly, MobileNetV3s achieves a balance between computational efficiency and model accuracy. Its 

architecture incorporates various innovative design choices, such as efficient inverted residuals and 

squeeze and excitation modules, which contribute to improved performance. By integrating 

MobileNetV3s into YOLOv5, we can leverage these advances to improve detection accuracy while 

maintaining real-time performance. 

In this paper, we propose an improved YOLOv5 architecture with backbone replacement to 

MobileNetV3s for school attribute detection. We demonstrate the effectiveness and efficiency of the 

integrated model through comprehensive experiments on data sets. The results highlight the potential of 

changing the backbone to this technology compared to the results of the original YOLOv5 architecture 

in addressing the specific challenges of attribute detection in schools, which may be implemented in 

other cases. 
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LITERATURE REVIEW 

YOLO, a unified model for object detection (Redmon et al., 2016). A deep learning-based object 

detection framework, which has revolutionized the field of object detection introduced in 2015. The 

original YOLO model can analyze images in real-time, processing 45 frames per second. A more 

compact version called Fast YOLO achieves an impressive speed of 155 frames per second while 

maintaining twice the average precision (mAP) of other real-time object detection systems (Redmon et 

al., 2016). And in 2016 it introduced the YOLO9000: Better, faster, stronger (Redmon & Farhadi, 2017). 

An advanced real-time object detection system that can detect more than 9000 categories of objects. 

These improvements are not limited to the use of Darknet-19 as a new architecture but also include 

batch normalization, higher input resolution, convolution layers with anchors, dimensional clustering, 

and fine-grained features. Using the new multi-scale training method, the same YOLOv2 model can run 

at multiple sizes, offering an easy trade-off between speed and accuracy. At 67 FPS, YOLOv2 achieved 

76.8 mAP in VOC 2007. At 40 FPS, YOLOv2 achieved 78.6 mAP, outperforming cutting-edge methods 

such as Faster RCNN with ResNet and SSD, but still running significantly faster. YOLOv3: Incremental 

Improvement (Redmon & Farhadi, 2018). At 320×320 YOLOv3 runs in 22 ms at 28.2 mAP, as accurate 

as SSD but three times faster. When looking at the old .5 IOU mAP detection metric, the YOLOv3 does 

quite well. YOLOv3 achieved 57.9 AP50 in 51 ms on the Titan X, compared to 57.5 AP50 in 198 ms 

by RetinaNet, the same performance but 3.8 times faster. YOLOv3 is a good detector. It's fast and 

accurate. It's not very good at the COCO average AP between 0.5 and 0.95 IOU metric. But it is very 

good on old detection metrics of 0.5 IOU. YOLOv4: Optimal Speed and Accuracy of Object Detection 

(Bochkovskiy et al., 2020). Tons of features are said to improve the accuracy of the Convolutional 

Neural Network (CNN). Some features operate on certain models exclusively and for certain problems 

exclusively, or only for small-scale datasets; while some features, such as batch-normalization and 

residual-connection, can be applied to most models, tasks, and datasets. New features in YOLOv4: 

WRC, CSP, CmBN, SAT, Mish activation, Mosaic data augmentation, CmBN, DropBlock 

regularization, and CIoU loss, and combine some of these features to achieve state-of-the-art results: 

43.5% AP (65.7% AP50) for the MS COCO dataset with a realtime speed of ∼65 FPS on a Tesla V100. 

For YOLOv5 there is no exact source of who created it from the research paper, but it is the first version 

of YOLO implemented on Pytorch, not Darknet. YOLOv5, like YOLOv4, uses CSPDarknet53 as its 

architectural backbone (Jocher et al., 2020). The launch consists of five different model sizes: YOLOv5s 

(smallest), YOLOv5m, YOLOv5l, and YOLOv5x (largest). One of the main improvements in the 

YOLOv5 structure is the incorporation of the Focus module, denoted by the solitary module, which is 

formed by replacing the initial three modules of the YOLOv3. This merger reduces the number of 

modules and parameters while increasing the forward and backward propagation speeds, all without 

significantly affecting the mean average precision (mAP). There are several other versions of YOLO 

itself, but the most modification of the YOLO architecture is done in the YOLOv5 version by replacing 

the backbone part with a Convolutional Neural Network (CNN) architecture. With the implementation 

of PyTorch for YOLOv5, it will be easier to replace the backbone or merge it with the Convolutional 

Neural Network (CNN) architecture. YOLO-Z: Improving small object detection in YOLOv5 for 

autonomous vehicles(Benjumea et al., 2021). who proposed a series of models at different scales, named 

'YOLO-Z', and who displayed up to 6.9% improvement in mAP when detecting smaller objects at 50% 

IOU, at the cost of only 3ms improvement in inference time compared to the original YOLOv5. YOLO-

Z has experimented with replacing the existing backbone in YOLOv5 with ResNet and DenseNet as the 

backbone. For the backbone replacement itself, you can use popular CNN architectures that support 

PyTorch, one of which is MobileNet. MobileNet is an efficient CNN architecture model designed with 

2 sets of hyper-parameters to build a very small and low latency model that will be easily implemented 

according to the needs of mobile and embedded applications(SUYUTI, 2023). MobileNetV3 is divided 

into two variants, MobileNetV3-Large and MobileNetV3-Small, which are designed for scenarios with 

high and low resource requirements and these models are then adapted and applied to object detection 

and semantic segmentation tasks (Howard et al., 2019). MobileNetV3 variants achieve more advanced 

results for mobile classification, detection, and segmentation. MobileNetV3-Large is 3.2% more 

accurate in ImageNet classification while reducing latency by 20% compared to MobileNetV2. 

MobileNetV3-Small is 6.6% more accurate compared to the MobileNetV2 model with comparable 
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latency. MobileNetV3-Large detection is more than 25% faster with approximately the same accuracy 

as MobileNetV2 on COCO detection. MobileNetV3-Large LRASPP is 34% faster than MobileNetV2 

R-ASPP with similar accuracy for segmenting Cityscapes(Howard et al., 2019). 

 

METHOD 

The research flow used for this research can be seen in Figure 1, which illustrates the stages of 

research. It consists of five main processes that will be carried out, namely: Dataset Preparation, 

Backbone Changing, Modelling, Training Model, and Evaluation Performance. 

 

 

Figure 1. Workflow Research 

Dataset Preparation 

The dataset for this research was obtained from image data taken from elementary schools, and 

junior high schools, and some images from the internet with a total of 334 images.. From the 

image data, bounding box, preprocessing, and augmentation using roboflow web are performed. 

Furthermore, from the dataset, there are four classes, with details of 255 hats, 219 ties, 211 belts, 

and 184 bets. Figure 2 presents a representation of the dataset used in this study. 

 

 

Figure 2. School Attribute Dataset 

Backbone Changing 

Backbone changes were made in this study, changes using the MobileNet V3 Small CNN 

architecture. Mobile Netv3 inherits the strengths of the previous version, introduces several new 

modules, and uses the latest Neural Architecture Search (NAS) technology to automatically find 

the optimal neural network structure on the target data set. Mobile Netv3 introduces a channel 

attention mechanism, called the SE module, to improve model performance. The SE module 

aims to learn the correlation between channels and give higher weights to more important 

channels, thus increasing their significance in the model. This mechanism improves the overall 

performance of the model. In addition, MobileNetv3 uses NAS (Neural Architecture Search) 

technology to optimize the network structure. Through this process, some layers that require 

long computation time are optimized or eliminated. For example, the number of convolution 

kernels in the first convolution layer was reduced from 32 to 16. Surprisingly, the accuracy of 

the network remained almost constant despite the reduction in layers. 
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Figure 3. MobileNet V3 small architecture 

From the architectural drawing in Figure 3, Mobile Netv3 is broadly divided into feature, 

avgpool, and classify, and their functions are feature extraction, global pooling, and classifier. 

of all layers, only 13 layers are taken as feature extractors, and the last three downsampling 

parts. Furthermore, it will be subdivided into three parts that start and move forward from the 

end. Bneck itself is a block of layers owned by mobilenetv3. Each block consists of a narrow 

input and output (bottleneck), which has no nonlinearity, followed by expansion to a higher 

space and projection to the output (HOWARDS). Figure 4 illustrates part of the bottleneck or 

Inverted Residual layer of mobilenetv3. 

 

Figure 4. Mobilenet V3 Block 

The 13 layers taken will be divided into three parts, namely, the first part, layers one to four, the 

second part, layers five to nine, and the last part is taken from layers 10 to 13. 

Modelling 

After getting a new backbone from MobileNet V3 Small, the next step is to create a model. In 

making a model in YOLOv5 there is a YAML config file that must be adjusted to the new 

backbone. This YAML config file consists of a section, backbone, and head, Figure 5 is the 

model configuration of YOLOv5 which will be used in this study. 
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Figure 5 YOLOv5 Model Config 

Model Training 

Before performing the model training process several hyperparameter configurations are set 

beforehand.   The hyperparameters used here will be used as a reference for the comparison of 

training results before and after backbone changes. The hyperparameters used are learning rate, 

optimizer, epoch, and batch size configurations, Image size or default from YOLOv5. 

Hyperparameter configuration details can be viewed in Table 1. 

Table 1. Hyperparameter configuration 

Parameter Value 

Learning rate 0.01 

Optimizer SGD 

Epoch 100 

Batch size 16 

Image size 640 

Iou_t 0.2 

 

Performance Evaluation 

After training and testing, the next stage is performance evaluation. At this stage, the model 

evaluation is visualized using the precision-recall curve. data from the precision-recall curve is 

then used to calculate the precision (1), recall (2), and MAP or Mean Average Precision (3) of 

each class. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝐹𝑃+𝑇𝑃)
  (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝐹𝑁+𝑇𝑃)
  (2) 

 

𝑀𝐴𝑃 =
1

𝑁
 ∑ 𝐴𝑃𝑖

𝑁
𝑖=1   (3) 
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Precision is a measure of the extent to which the model correctly classifies or predicts positives, 

out of all examples classified as positive. A high precision value indicates that the model tends 

to have few errors in classifying the wrong attribute as positive. The recall is about how good 

the model is at finding positive examples. A high recall value indicates that the model tends to 

have few errors in classifying positive examples as negative. 

 

RESULT 

A total of 1624 images were used in the dataset for the experimental results of this study. The dataset 

was split into 80% for training, 14% for validation and 8% for testing. The architecture of YOLOv5 

after backbone change by MobileNet V3 Small is shown in the figure below.  

 

 

Figure 6 Summary Architecture YOLOv5 

By comparing improved YOLOv5 with YOLOv5, we found that YOLOv5 with MobileNet V3 small 

backbone scored 0.912 at a larger mAP50 than the original YOLOv5 which scored 0.882 at mAP50 

with the same training configuration. By comparing the improved YOLOv5 with the original YOLOv5, 

the result is that YOLOv5 with the small MobileNet V3 backbone gets 0.912 at mAP50 which is greater 

than the original YOLOv5 which gets 0.882 at mAP50 with the same training configuration. Evaluating 

and comparing the two types of models trained using the evaluation metrics mAP@50, weight size, 

memory usage, and training time shows that the model with the MobileNet backbone is better than the 

original YOLOv5 model. In terms of accuracy on the mAP50 evaluation metric as previously described, 

the accuracy is 0.912 for YOLOv5 MobileNet and 0.882 for the original YOLOv5. For weight size and 

memory usage during the training process, YOLOv5 MobileNet itself gets a size of 80.7 MB, for 

memory usage consumes memory of <7 GB. As for the original YOLOv5 as stated in Table 2, the weight 

size gets a size of 92.7 MB and memory usage takes up the memory of > 10 GB. See Table 2 for details.  

Table 2. Result Improved YOLOv5 and YOLOv5 

 YOLO + MobileNet V3 small YOLOv5 

mAP50 0.912 0.882 

Weight size 80.7 MB 92.7 MB 

Memory usage 6.47 GB 10.9 GB 

Training time 1h 11min 19s 49min 36s 

 

First, regarding the results of the original YOLOv5, the overall model achieved a mAP50 value of 

0.882 which can also be seen in Figure 7. The model also obtained a Precision value of 0.892, Recall of 

0.819. This shows that the model can detect and recognize objects with high accuracy. 
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Figure 7. Precision-Recall Curve YOLOv5 Original 

Furthermore, the performance evaluation of the system in detecting objects in more specific classes, 

such as "bet", "dasi", "sabuk", and "topi". As shown in Table 3, the results show that the system has 

excellent performance in detecting objects in the "bet" class, with Precision (P) values reaching 0.96, 

Recall (R) of 0.872, and mAP50 of 0.901. This high performance shows that the system can recognize 

and distinguish objects in the "bet" class very well. However, in the "tie" class, although the system still 

has good performance with a Precision (P) value of 0.878, Recall (R) of 0.771, and mAP50 of 0.862, 

there is a slight decrease in object detection performance. The same can be seen in the "belt" class with 

a Precision (P) value of 0.88, Recall (R) of 0.804, and mAP50 of 0.869. Finally, in class "topi", YOLOv5 

model again shows good performance with a Precision (P) value of 0.849, Recall (R) of 0.829, and 

mAP50 of 0.896. Nevertheless, all classes are still able to provide fairly good results in detecting objects. 

Table 3. Details Result from YOLOv5 

Class Precision Recall mAP50 

All 0.892 0.819 0.882 

Bet 0.69 0.872 0.901 

Dasi 0.878 0.771 0.862 

Sabuk 0.88 0.804 0.869 

topi 0.849 0.829 0.896 

Furthermore, for the YOLOv5 model with a small MobileNet V3 backbone, the training process is 

carried out with the same parameters as before. Compared to the previous results, there is an increase in 

model performance in each class. Overall, as presented in Figure 8, the model achieves high accuracy 

with a Precision value of 0.914 and a Recall value of 0.873, as well as a mAP50 of 0.912 which is shown 

in the graphical precision-recall curve quite well. The evaluation results show a considerable 

improvement in the model's performance in detecting various object classes. 
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Figure 8 Precision Recall Curve YOLOv5 MobileNet 

As can be seen in Table 4, the improved model achieved an overall Precision of 0.914, compared to 

0.892 in the previous study. This increase in Precision is also seen in each object class studied, with the 

highest increase in the "bet" class from 0.96 to 0.979, and the "hat" class from 0.849 to 0.919, which 

can be seen again in the performance of YOLOv5 in table 3. This improvement shows that the updated 

model has a better ability to recognize and limit false positives. In addition, the updated model also 

shows an improvement in Recall on some object classes. The overall Recall increased from 0.819 to 

0.873. Significant improvements were also seen in the "tie" class from 0.771 to 0.883, and the "belt" 

class from 0.804 to 0.835. However, there was a slight decrease in the Recall of the "hat" class from 

0.829 to 0.88. This shows that the model can still improve its detection ability on some specific object 

classes. In addition to the increase in Precision and Recall, mAP50 also experienced a significant 

increase from 0.882 to 0.912 overall. There is a considerable increase in the "hat" class from 0.896 to 

0.946, indicating a better ability to provide an accurate score for object detection. 

Table 4. Details Result from YOLOv5 MobileNet 

Class Precision Recall mAP50 

All 0.914 0.873 0.912 

Bet 0.979 0.894 0.916 

Dasi 0.874 0.883 0.91 

Sabuk 0.885 0.835 0.877 

topi 0.919 0.88 0.946 

 

DISCUSSIONS 

According to these results, the YOLOv5 model improved with the MobileNet V3 small backbone 

achieved better performance evaluation results in detecting various object classes in the dataset used 

compared to the original YOLOv5.. The improvements in Precision, Recall, and mAP50 show 

significant progress in the model's ability to recognize and detect objects with higher accuracy. YOLOv5 

with MobileNet V3 small backbone also shows very satisfactory results, based on Table 2, it can be said 

that by changing the backbone to MobileNet V3 small the model becomes faster and more efficient than 

the original YOLOv5. Although the training time is longer than the original YOLOv5, the weight and 

memory used are much smaller than the original YOLOv5. Although most of the images in the dataset 

are elementary school uniform images, converting them to grayscale helps the model detect attributes 
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used in middle and high school uniforms as well. Figure 7 is the result of inferencing attribute detection 

in high school children. 

 

Figure 9 Result of High School Uniform 

However, the results of this study are only applicable to the situation and dataset used in this research. 

Future research will therefore focus on developing more effective and efficient methods to improve 

model performance, especially for classes of object detection and model sizes that are not yet 

performance-optimized. Perhaps the use of data augmentation techniques, model architecture 

optimization, or using of a variety of training data can enhance performance in these classes. 

 

CONCLUSION 

In this research, it is shown that YOLOv5 that has been backbone transformed with MobileNet V3 

small has higher accuracy results compared to the original YOLOv5. In addition to having high accuracy 

results, the improved YOLO produces a model that is more efficient in memory usage and the size of 

its weight. For the accuracy result itself, although the improved YOLOv5 is higher by about 0.912 for 

mAP50. However, this cannot be generalized to other problems, further research is needed. It can also 

show that replacing the backbone in YOLOv5 can affect the accuracy of the model. 
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