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Abstract: The classification process often needs help with suboptimal 

accuracy values, which can be attributed to various factors, including the 

dataset's wide range of attribute values. Discretization methods offer a 

solution to address these issues. This study aims to compare the effectiveness 

of Equal-Width and Equal-Frequency discretization methods in enhancing 

accuracy during the classification process using datasets with varying sizes. 

The research employs Naïve Bayes, Decision Tree, and Support Vector 

Machine as classification models, with three datasets utilized: Bandung City 

Traffic data (3804 records), Bandung City COVID-19 cases data (2718 

records), and Bandung City Dengue Fever Disease Index data (150 records). 

Three experimental scenarios are executed to assess the impact of the two 

discretization methods on accuracy. The first scenario involves no 

discretization, the second employs Equal-Width, and the third applies Equal-

Frequency discretization. Experimental results indicate significant accuracy 

improvements post-discretization. The Naïve Bayes model achieved 94% 

accuracy for the Traffic dataset, while the Decision Tree achieved 71% 

accuracy for the COVID-19 dataset and an impressive 98% for the Dengue 

Fever Disease dataset. These outcomes demonstrate that applying Equal-

Width and Equal-Frequency discretization methods addresses the challenge 

of wide attribute value ranges in the classification process. 

 

Keywords: Accuracy, Discretization, Equal-width, Equal-Frequency, 

Classification 

 

INTRODUCTION 

Data preparation is one of the stages necessary in data mining (DM) before implementing data 

mining classification algorithms (DMCA) to the data. Data preprocessing is a necessary phase in data 

mining encompassing techniques such as data transformation, cleansing, reduction, and discretization 

(Hacibeyoglu & Ibrahim, 2018). The variation of data values processed in data mining is often found in 

one attribute between one value and another having a range or gap that is too far. In the past few decades, 

researchers have studied one of the discretization algorithms that is now one of the most frequently used 

preprocessing techniques in data mining (Xiong et al., 2018) 

The working principle of discretization is to change or separate continuous properties into categories 

or nominal. Variables with continuous values are converted to discrete variables, built with several non-

overlapping intervals in this process. The primary benefits of discretization are: (1) data is reduced and 

takes up less storage space. (2) Discrete data is easier to grasp, utilize, and explain since it is closer to 

the level of knowledge than continuous data. (3) With discrete data, DMCA can work faster and achieve 

higher classification accuracy. Data mining classification algorithms such as Naïve Bayes, Decision 
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Tree, and Support Vector Machine are ten frequently used classification models (Tsai & Chen et al., 

2019). However, these algorithms can only process or process numerical data. It aims to ensure that by 

using discretization, performance would be maximized by creating more effective and efficient models 

(Stańczyk et al., 2020). 

The research that has been studied by (Xiong et al., 2018) compared the discretization algorithm in 

decision tree classification. Moreover, research (Yamasari et al., 2020)  implemented unsupervised 

discretization in naive Bayes classification. In the study conducted by (Surono et al., 2020), using equal-

width discretization with the naive Bayes classification model increased the accuracy value in TB 

patients to 81%. The three studies prove that discretization in data preprocessing can improve the 

accuracy value in a classification model. 

Based on the description of discretization unsupervised equal-width and equal-frequency methods 

in previous studies. This research will then be distinguished into three scenarios: without data 

preprocessing or discretization, implementing equal-width discretization, and implementing equal 

frequency discretization. This study aims to apply the unsupervised equal-width and equal-frequency 

discretization methods on data features with a range that is too far can improve the classification model. 

The contribution of this study is to identify the influence of the amount of data on the performance of 

unsupervised equal-width and equal-frequency discretization.  

  

LITERATURE REVIEW 

Discretization is a data pre-processing technique that transforms continuous data into discrete values. 

This method can be helpful for various tasks, such as classification, clustering, and regression. Many 

different discretization methods are available, each with its advantages and disadvantages. Two of the 

most common discretization methods are equal-width and equal-frequency. Equal-width discretization 

divides the range of continuous data into a fixed number of intervals of equal width. Equal-frequency 

discretization divides the range of continuous data into a fixed number of intervals with equal frequency. 

Numerous researchers have researched how discretization algorithms perform on classification 

problems (Xiong et al., 2018) Conducted research that compared the discretization algorithm in decision 

tree classification. Furthermore, researchers (Yamasari et al., 2020) used unsupervised discretization in 

Naïve Bayes classification. In the study conducted by (Surono et al., 2020) using equal-width 

discretization with the Naïve Bayes classification model, the accuracy value in TB patients increased to 

81%. The three studies prove that discretization in data pre-processing can improve the accuracy value 

in a classification model. 

Moreover, equal-width discretization is generally more effective than equal-frequency discretization 

for some classification algorithms, such as decision trees and support vector machines. However, equal 

frequency discretization is more effective for other classification algorithms, such as naive Bayes. 

The choice of discretization method can also depend on the characteristics of the data set. For 

example, if the data set is highly skewed, equal frequency discretization may be more effective than 

equal width discretization. 

Discretization 

The process of reducing continuous data into discrete values is known as discretization. This 

method can be done for various reasons, such as simplifying the data, making it more compatible 

with a particular algorithm, or improving the performance of a machine learning model. 

There are many different discretization methods available. Some of the most common methods 

include: 

-       Equal width discretization: This method divides the range of continuous data into a fixed 

number of intervals of equal width. 

-       Equal frequency discretization: This method divides the range of continuous data into a fixed 

number of intervals with equal frequency. 

-       Chi-squared discretization: This method uses the chi-squared statistic to determine the 

optimal number of intervals for discretization. 

-       Information gain discretization: This method uses information gain to determine the optimal 

number of intervals for discretization. 
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The choice of discretization method depends on the specific application. However, in general, 

equal-width discretization is a good choice for simple data sets, while equal-frequency 

discretization is a good choice for complex data sets. 

Discretization Equal-Width  

Equal-width discretization is a simple and effective discretization method. It divides the range of 

continuous data into a fixed number of intervals of equal width. The width of each interval is 

determined by the total range of the data and the number of intervals. 

The following formula can be used to calculate the width of each interval in equal-width 

discretization: 

𝑤𝑖𝑑𝑡ℎ: (𝑚𝑎𝑥 −  𝑚𝑖𝑛) /𝑛 

Where: width is the width of each interval, max is the maximum value in the data set, min is the 

minimum value in the data set, and n is the number of intervals.  

Discretization Equal-Frequency 

Equal frequency discretization is another simple and effective discretization method. It divides 

the range of continuous data into a fixed number of intervals with equal-frequency. The number 

of values in each interval is determined by the total number of values in the data set and the 

number of intervals. 

The following formula can calculate the number of values in each interval in equal frequency 

discretization: 

𝑛_𝑣𝑎𝑙𝑢𝑒𝑠 =  𝑡𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒𝑠/𝑛 

Where: n_values are the number of values in each interval, total_values are the total number of 

values in the dataset, and n is the number of intervals 

 

METHOD 

System Design  

The system built in this study was to compare the performance of equal-width and equal-

frequency discretization using Naïve Bayes, Decision Tree, and Support Vector Machine 

classification models. The study also implemented three scenarios: without, equal-width, and 

equal-frequency discretization. The following is a flowchart of the system design that was built: 

Figure 1 Flowchart design system 

 
Dataset  
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This study employed three separate datasets, each with a different amount of data points. The 

small dataset was the Dengue Fever Disease dataset from Bandung Regency. The medium-sized 

dataset was the COVID-19 dataset from Bandung Regency, with 2718 data points. The large-

sized dataset was the Traffic Dataset from Bandung Regency, with 3804 data points. This study 

was done to determine whether the number of data points affects the performance of the 

discretization method.  

1. Traffic Congestion Dataset 

The traffic measurement data contains 3804 rows from April 1st to April 30th, 2022. 

The traffic measurement data contains street name, lane, time, day, date, number of 

motorcycles, number of cars, number of trucks, headway, GAP, 85th percentile speed, 

AVG Speed, road width, and queue length. Only the attributes with an extensive range 

of gaps between values are discretized in this dataset, as shown in the following table:   

Table 1 Traffic Congestion Dataset 

Fitur Description Range  

X1 Number of Motorcycles  (-501) - 4232 

X2 Number of Cars 1 - 2647 

X3 Number of trucks 0 - 1280  

X4 Total number of vehicles 2 - 5011 

X5 Number of GAP(s) 0.2 - 503.57 

X6 Number of Queue lengths (m) 0 - 850 

 

2. COVID-19 Dataset 

The COVID-19 dataset contains 2716 rows from December 2020 to April 2022. The 

data contains Month, Village, Male, Female, Rainfall, Sunlight, Average Temperature, 

Maximum Temperature, Minimum Temperature, No/Not in School, Not Graduated 

from Elementary School, Graduated from Elementary School, Junior High School, 

Senior High School, Vocational I and II, Vocational III, Bachelor Degree / Vocational 

IV, Magister Degree, Doctoral Degree, Dose 1, Dose 2, Dose 3, Compliance with Mask 

Wearing, Compliance with Social Distancing, Confirmed Cases, Recovered Cases, and 

Death Cases. Only the attributes with an extensive range of gaps between values are 

discretized in this dataset, as shown in the following table: 

Table 2 COVID-19 Dataset 

Fitur Description Range  

X1 Number of Male 1009 - 20302 

X2 Number of Female  1082 - 20451 

X3 Number of No/Not yet in School 225 - 7828 

X4 

Number of Not yet graduated 

elementary school 144 - 3754 

X5 

Number of Graduated from 

elementary School 63 - 6569 

X6 

Number of Graduated from Junior 

High School 145 - 5698 

X7 

Number of Graduated from Senior 

High School 587 - 13844 

X8 

Number of Graduated from 

Vocational III 49 - 2272 

X9 

Number of Graduated with 

bachelor’s degree / Vocational IV 149 - 5790 

X10 Number of Vaccine dose 1 0 - 17772 

https://doi.org/10.33395/sinkron.v8i4.12730
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X11 Number of Vaccine dose 2 0 - 15648 

X12 Number of Vaccine dose 3 0 - 3400 

X13 

Number of Discipline in wearing 

masks 755 - 37566 

X14 

Number of Discipline in social 

distancing 958 - 36494 

X15 Number of Total Cases of infection 2 - 8051 

 

3. Dengue Fever Disease Dataset 

The dengue fever disease dataset contains 150 rows from 2017 to 2021. The data 

contains district, population, population proportion, rainfall, temperature, humidity, 

blood group A, blood group B, blood group AB, blood group O, elementary school 

graduate, junior high school graduate, senior high school graduate, college graduate, 

and incidence rate of disease. Only the attributes with an extensive range of gaps 

between values are discretized in this dataset, as shown in the following table: 

Table 3 Dengue Fever Disease Dataset 

Fitur Description Range  

X1 Number of Population 24145 - 142528 

X2 Number of blood group A 1276 - 19330 

X3 Number of blood group B 1379 - 16489 

X4 Number of blood group AB 749 - 7036 

X5 Number of blood group O 2537 - 23738 

X6 

Number of Graduated from elementary 

School 2126 - 29951 

X7 

Number of Graduated from Junior High 

School 2848 - 24062 

X8 

Number of Graduated from Senior High 

School 7897 - 46043 

X9 

Number of Graduated with bachelor’s 

degree 11612 - 64669 

 

Preprocessing  

In this preprocessing, the author divides it into three different scenarios for each dataset: 

a. Scenario 1  

In the first scenario, the author does not implement any preprocessing process without 

discretization. The final values obtained from this process will serve as a benchmark for 

performance comparison in the following discretization scenarios. 

b. Scenario 2  

In scenario 2, the author implements equal-width discretization, where attributes in the 

dataset have a wide or long range of values. They are then discretized using different values 

of k for each dataset, with the size of k determined based on the final classification results in 

each model. 

c. Scenario 3  

In scenario 3, the author applies equal-frequency discretization, where attributes in the 

dataset have a wide or long range of values. They are then discretized using different bin 

values for each dataset, with the k size determined based on each model's final classification 

results. 

 

Discretization equal width  
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The equal-width discretization method is the simplest and easiest method to apply for data 

processing. It works by dividing the range of values into equal k bins, where the value of k is 

calculated according to the predetermined binning (Hacibeyoglu et al., 2018). Equal-width 

calculates the interval of the bin and the limits of attribute A, limited by the values 𝒂𝒎𝒊𝒏  and 

𝒂𝒎𝒂𝒙 based on the following equation: 

 

Width bin = (𝒂𝒎𝒂𝒙  −   𝒂𝒎𝒊𝒏)/k 

Limit = 𝒂𝒎𝒊𝒏 + (i × width bin) 

Where i = 1, 2,………., k – 1 

(1) 

 

(2) 

Table 4 Algorithm equal-width 

Input: The value of a continuous attribute (Example A = {𝒂𝟏, 𝒂𝟐, . . . . . . . , 𝒂𝒏−𝟏, 𝒂𝒏}) and 

the value of interval k, where k > 0. 

Proses 1: Sorting the number of A in ascending order and calculating the values of 𝒂𝒎𝒂𝒙 

dan 𝒂𝒎𝒊𝒏,  

Proses 2: Calculating the bin width based on equation (1), 

Process 3: Creating bins based on the bin width,  

Process 4: Creating intervals and limits based on equation (2), 

Process 5: Converting the continuous values of A into discrete values by calculating the 

range values, 

Output: A with discrete values. 

 

Although equal-width is quite simple, it is challenging to determine the appropriate number 

of intervals, k. This method may provide unbalanced or empty intervals if the property has 

outliers or extreme values (Hacibeyoglu et al., 2018). 

 

Discretization equal frequency  

The equal-frequency discretization method proceeds by dividing the data into k intervals. 

Each interval has n/k values, where n is the total number of possible values. The most 

frequent approach is equal-frequency discretization. It reduces the impact of outliers and 

groups comparable data into a single period. However, similar to equal width, the equal-

frequency discretization approach requires assistance in determining the ideal number of 

intervals, k. This approach can place identical values in two or more neighboring intervals. 

Table 5 Algorithm Equal-Frequency 

Input: The values of continuous attributes (Example A = {𝒂𝟏, 𝒂𝟐, . . . . . . . , 𝒂𝒏−𝟏, 𝒂𝒏}) and 

the value of interval k, where k > 0. 

Process 1: Sorting  𝒂𝒍𝒍 𝒗𝒂𝒍𝒖𝒆𝒅 𝒐𝒇 A in ascending 

Process 2: Dividing A into k intervals, 

Process 3: Creating bins based on the number of elements in each range, 

Process 4: Determining the average value of the most significant bin to determine the 

limits of each interval, 

Process 5: Converting the continuous values of A into discrete values by identifying the 

range from the selected bin's value and the smallest value from the next bin, 

Output: A with discrete values. 
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The most common approach is equal-frequency discretization. It reduces the impact of outliers 

and groups comparable data into a single period. However, the equal-frequency discretization 

approach, like equal width, requires assistance in determining the ideal number of intervals k. 

This approach can place identical values in two or more neighboring intervals(Hacibeyoglu et 

al., 2018). 

 

Labeling Data 

Labeling data is done to categorize it based on existing rules. For example, the occupancy dataset 

is grouped into traffic congestion levels regarding the Indonesian Road Capacity Manual (1997). 

The levels are classified into four groups: label 0 for free flow, label 1 for stable flow, label 2 for 

stable and controlled flow, and label 3 for unstable flow.  

Table 6 Labeling Traffic Congestion Dataset 

Class Class Label Range  

Free Flow 0 Occupancy ≤ 60% 

Stabil Flow 1 60% < occupancy ≤ 70% 

Controlled Flow 2 70% < occupancy ≤ 80% 

Unstable 3 80% <occupancy ≤ 90% 

 

Table 7 Any rules have not established the grouping or labeling in the COVID-19 dataset; 

therefore, the author categorized it into three levels based on the number of cases: 0 for low, 1 

for medium, and 2 for high. 

Table 7 Labeling COVID-19 Dataset 

Class Class Label Range  

Low 0 Cases < 218 

Medium 1 218 ≤ Cases < 419 

High 2 Cases ≥ 419 

 

Table 8 The labeling in the Dengue Fever Disease dataset is based on the number of cases that 

occur per 100,000 population and is grouped into three levels based on the number of cases: 0 

for low, 1 for medium, and 2 for high. 

Table 8 Labeling Dengue Fever Disease Dataset 

Class Class Label Range  

Low 0 Cases < 55 

Medium 1 55 ≤ Cases < 100 

High 2 Cases ≥ 100 
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Oversampling Data 

Oversampling is the process of distributing the class with a more significant number of instances 

to the class with a smaller number of instances. This method allows the smaller classes to be 

noticed during classification (Thabtah et al., 2020). However, oversampling, used to address 

imbalanced data and maximize classification results, is only sometimes efficient in the same way 

in this research case. In some scenarios of this study, oversampling leads to suboptimal 

classification results, which several factors can cause. One of the reasons is the significant gap 

or range between data points in each class. 

Implementation  

a. Naïve Bayes 

A naive Bayes classifier is an example of a Bayesian network utilized for categorizing 

issues. This simple probabilistic classification model computes the likelihood of a given 

target variable or group of variables. For example, feature or attribute variables can be 

utilized to predict the target variable's class properly. The computational simplicity of the 

Nave Bayes technique and method allows it to be trained more rapidly than other machine 

learning models. The typical Naive Bayes method has one target variable and several feature 

variables. Assume T is the state or class of the target variable, and X = (X1, X2,…, Xn) 

represents the state of n features (Saleh et al., 2023). The maximum-a-posteriori (MAP) rule 

determines the final classification result. The formula of Bayes' theorem is as follows: 

 

𝑃(𝐻|𝑋) =  
𝑃(𝑋|𝐻) .  𝑃(𝐻)

𝑃(𝑋)
 (3) 

 

Where 𝑃(𝐻) and 𝑃(𝑋) are constants that can be derived directly from the data, while 

𝑃(𝑋|𝐻): is left to solve. The Naïve Bayes approach can be developed in the following 

equation: 

 

𝑃(𝐶|𝐹1. . . . 𝐹𝑛) =  
𝑃(𝐶)   𝑃(𝐹1. . . 𝐹𝑛|𝐶)

𝑃(𝐹1. . . . 𝐹𝑛)
 (4) 

 

Where variable C represents the class and variables F1...Fn indicates the classification 

research method features. The formula may then be expressed more simply as follows 

(Fajriati et al., 2023) 

 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑝𝑟𝑖𝑜𝑟 𝑥 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
 (5) 

 

b. Decision Tree 

The Decision tree model is built like a tree, with each node representing a test on an attribute 

and each branch indicating the test outcome. Each leaf node corresponds to a class label 

(Setyawan et al., 2020). The Decision tree is built top-down, from nodes to the root, and 

recursively partitions the data processing until each partition ends with a leaf node. 

Furthermore, the decision tree can be transformed into several rules that assist in this 

research to be clearly understood. The chosen measurement techniques for attribute test 

division are entropy, Gini index, and gain ratio. 

• Entropy Gain and Gain Ration 

Entropy is a measure of a dataset's unpredictability or uncertainty. Entropy values are 

always between 0 and 1. It is better when the value is closer to 0; when it is closer to 1, 

it is worse. If the goal is G with varied attribute values, as illustrated in "Figure 3," the 

classification entropy of set S associated with the variable c is determined. This is seen 

in the "equation(6)." 
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Figure 2 Value of Entropy (Charbuty et al., 2021)  

 
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ 𝑃𝑖

𝑐
𝑖=𝑖 log 2𝑃𝑖 (6) 

P_i is the ratio of the subset of sample numbers to the value of attribute i. 

Information Gain, also known as mutual information, is one of the measures used for 

segmentation. This measure indicates how much information is gathered about the 

random variable. It is the inverse of entropy, with greater levels indicating better 

performance. Data Gain(S, A) is defined in the notion of entropy as follows, as 

illustrated in "equation (6)". 

 

𝐺𝑎𝑖𝑛(𝑆, 𝐴) = ∑ ∈𝑉 𝑉(𝐴)
|𝑆𝑣|

|𝑆|
 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣) (7) 

 

V(A) represents the interval of attribute A, and S_v is a subset of S that equals the 

attribute value v (Charbuty et al., 2021) 

 

c. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is an approach that uses supervised learning used to 

examine data and uncover patterns in classification and regression analysis. (Syahputra et 

al., 2022). The main idea behind this methodology is to discover the best separator space 

among many classifications in a dataset. This strategy involves searching for a hyperplane 

or dividing line that separates one class from another. It can also help with multi-domain 

applications in large data settings. SVM, on the other hand, is mathematically hard and 

computationally costly. SVM's linear function may be represented as follows: 

 

𝑓(𝑥) = (𝜔, 𝑥) + 𝑏 (7) 

 

Where 𝜔 the weight values as coefficients for each feature, modified throughout processing. 

The algorithm determines the weight values to produce a hyperplane with the greatest 

significant margin (Nedumaran et al., 2020). Numerous kernel functions are often employed 

in SVM, such as RBF, polynomial, and sigmoid, and they are denoted as follows: 

a. Radial Basis Function (RBF) 

𝐾(𝑥𝑖, 𝑥𝑗 ) = 𝑒𝑥 𝑝(−𝑦 ∥ 𝑥𝑖, 𝑥𝑗 ∥) (8) 

b. Polynomia 

𝐾(𝑥𝑖 , 𝑥𝑗 ) = (𝑦𝑋𝑖 𝑇 𝑥𝑗 + 𝑟) 𝑝 , 𝑦 > 0 

c. Sigmoid  

𝐾(𝑥𝑖, 𝑥𝑗) = 𝑡𝑎𝑛ℎ (𝑥𝑇 𝑥𝑗 + 𝑟) (9) 
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Evaluation 

The confusion matrix is a technique for evaluating the results or correctness of the classification 

proces (Luque et al., 2019). It uses a confusion matrix to evaluate how well the classifier 

identifies input from distinct classifications. This is the confusion matrix employed in Table: 
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Regarding on the available Table above, the performance of the constructed classification can be 

calculated, including: 

a. Accuracy 

Accuracy can be described as the ratio of correct predictions per document to total predictions 

for those categories. The following is an example of accuracy equation: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 

 

b. Precision 

It is the true positive data divided by the total data classified correctly 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 

𝑇𝑃  +  𝐹𝑃
 

 

c. Recall 

It represents true positive data classified correctly by the system. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃 

𝑇𝑃  +  𝐹𝑁
 

 

d. F1-Score 

The F1-Score is the harmonic mean of accuracy and recall, and it is directly proportional to 

both. The F1-score may be calculated as follows: 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2(𝑟𝑒𝑐𝑎𝑙𝑙 𝑥 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) 

𝑟𝑒𝑐𝑎𝑙𝑙 +  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 

 

RESULT 

This section will present the results of data processing from each dataset using three different 

scenarios. The results of the classification modeling can be seen in Table 9, Table 11, Table 12, and 

Table 13. WD refers to without discretization, EW refers to Equal-Width and EF refers to Equal-

Frequency 
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Table 9 Result of Accuracy 

Dataset 

Accuracy 

Naïve Bayes Decision Tree SVM 

WD EW EF WD EW EF WD EW EF 

Traffic 

congestion 61% 68% 94% 92% 93% 82% 92% 93% 86% 

COVID-19 61% 62% 64% 66% 71% 68% 66% 71% 68% 

Dengue Fever 

Disease 36% 47% 89% 49% 47% 98% 49% 47% 91% 

 

Table 10 Result accuracy of previous research (Nugroho et al., 2022) 

No Methods Accuracy 

1 Naïve Bayes 96.68% 

2 Naïve Bayes + Discretization 

Unsupervised (equal-width) 

97.66% 

 

In the Accuracy table 9, there is a significant improvement in the values for each dataset. The highest 

increase occurred in the Dengue Fever Disease dataset, where the accuracy value increased to 98% 

from the previous value of 36%. In the Traffic dataset, the accuracy value increased to 94% from 

the previous value of 61%. And in the COVID-19 dataset, the accuracy value improved to 71% from 

the previous value of 61%. 

In Table 10 of the study conducted by (Nugroho et al., 2022), the authors applied the unsupervised 

discretization method known as "equal-width" to classify Study Programs for Prospective New 

Students. The result obtained from this experiment showed an accuracy of 97.66% when tested on 

a dataset of 161 records. 

This research further explored and compared various discretization methods on three different 

datasets. Through this investigation, the authors discovered that discretization methods play a 

significant role in improving the accuracy of classification models. This finding indicates that 

discretization, specifically the "equal-width" and "equal-frequency" approaches, can effectively 

enhance the accuracy of the classification process. This method can lead to more precise and reliable 

classifications by dividing continuous attribute values into equal-width intervals. The study 

highlights the importance of considering suitable discretization methods based on the specific 

characteristics and complexity of the dataset. It also emphasizes the potential impact of using 

different discretization techniques to achieve better classification results in various scenarios.  

Table 11 Result of Precision 

Dataset 

Precision 

Naïve Bayes Decision Tree SVM 

WD EW EF WD EW EF WD EW EF 

Traffic 

congestion 42% 79% 48% 70% 79% 48% 70% 79% 56% 

COVID-19 60% 61% 62% 66% 70% 66% 60% 70% 62% 

Dengue Fever 

Disease 65% 51% 88% 57% 51% 98% 57% 51% 92% 

 

In the Precision table where WD refers to without discretization, EW refers to Equal-Width, and EF 

refers to Equal-Frequency, there is a significant improvement in the values for each dataset. The 

highest increase occurred in the Dengue Fever Disease dataset, where the precision value increased 

to 98% from the previous value of 65%. In the Traffic dataset, the precision value increased to 79% 
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from the previous value of 42%. Moreover, in the COVID-19 dataset, the precision value improved 

to 70% from the previous value of 60%. 

 

Table 12 Result of Recall 

Dataset 

Recall 

Naïve Bayes Decision Tree SVM 

WD EW EF WD EW EF WD EW EF 

Traffic 

congestion 72% 74% 47% 72% 74% 47% 72% 74% 50% 

COVID-19 59% 60% 62% 65% 70% 66% 65% 70% 66% 

Dengue Fever 

Disease 62% 43% 88% 52% 43% 98% 52% 43% 92% 

 

 

The Recall table where WD refers to without discretization, EW refers to Equal-Width, and EF 

refers to Equal-Frequency shows a significant improvement in the values for each dataset. The 

highest increase occurred in the Dengue Fever Disease dataset, where the recall value increased to 

98% from the previous value of 62%. In the Traffic dataset, the recall value increased to 74% from 

the previous value of 72%. Moreover, in the COVID-19 dataset, the recall value improved to 70% 

from the previous value of 59%. 

 

Table 13 Result of F1-Score 

Dataset 

F1 Score 

Naïve Bayes Decision Tree SVM 

WD EW EF WD EW EF WD EW EF 

Traffic 

congestion 40% 76% 53% 70% 76% 47% 70% 76% 53% 

COVID-19 59% 60% 61% 65% 69% 66% 65% 69% 66% 

Dengue Fever 

Disease 61% 42% 88% 52% 45% 98% 49% 45% 91% 

 

 

The F1 Score table, where WD refers to without discretization, EW refers to Equal-Width, and EF 

refers to Equal-Frequency, shows a significant improvement in the values for each dataset. The 

highest increase occurred in the Dengue Fever Disease dataset, where the F1-Score increased to 

98% from the previous value of 61%. In the Traffic dataset, the F1 Score increased to 76% from the 

previous value of 40%. Moreover, in the COVID-19 dataset, the F1 Score improved to 69% from 

the previous value of 59%. 
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Congestion Traffic Dataset 

Figure 3 Classification results graph of the Congestion Traffic Dataset 

 

     

       
 

 

In the above figure, it can be observed that the classification model results from the three scenarios 

are different. In the first scenario without discretization, Naïve Bayes achieved an accuracy of 61%, 

precision of 42%, recall of 50%, and F1 Score of 40%. Decision Tree achieved an accuracy of 92%, 

precision of 70%, recall of 70%, and F1 Score of 70%. Lastly, Support Vector Machine achieved 

an accuracy of 92%, precision of 70%, recall of 70%, and F1 Score of 70%. 

In the second scenario, applying Equal-Width discretization using k = 9, all three models had 

different outcomes. Naïve Bayes achieved an accuracy of 68%, precision of 47%, recall of 64%, 

and F1 Score of 46%. Decision Tree achieved an accuracy of 93%, precision of 79%, recall of 74%, 

and F1 Score of 76%. Support Vector Machine achieved an accuracy of 93%, precision of 79%, 

recall of 74%, and F1 Score of 76%. 

In the last scenario, using equal-frequency discretization with k = 5, all three models had different 

outcomes. Naïve Bayes achieved an accuracy of 94%, precision of 78%, recall of 84%, and F1 Score 

of 80%. Decision Tree achieved an accuracy of 82%, precision of 48%, recall of 47%, and F1 Score 

of 47%. Support Vector Machine achieved an accuracy of 86%, precision of 56%, recall of 50%, 

and F1 Score of 53%. 
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COVID-19 Dataset 

Figure 4 Classification results graph of the COVID-19 Dataset 

 

  
 

 

  
 

 

In the above figure, it can be observed that the classification model results from the three scenarios 

are different. In the first scenario without discretization, Naïve Bayes achieved an accuracy of 60%, 

precision of 60%, recall of 59%, and F1 Score of 59%. Decision Tree achieved an accuracy of 66%, 

precision of 66%, recall of 65%, and F1 Score of 65%. Lastly, Support Vector Machine achieved 

an accuracy of 66%, precision of 66%, recall of 65%, and F1 Score of 65%. 

In the second scenario, applying Equal-Width discretization using k = 12, all three models had 

different outcomes. Naïve Bayes achieved an accuracy of 62%, precision of 61%, recall of 62%, 

and F1 Score of 60%. Decision Tree achieved an accuracy of 71%, precision of 70%, recall of 70%, 

and F1 Score of 70%. Support Vector Machine achieved an accuracy of 71%, precision of 70%, 

recall of 70%, and F1 Score of 70%. 

In the last scenario, using equal-frequency discretization with k = 6, all three models had different 

outcomes. Naïve Bayes achieved an accuracy of 64%, precision of 62%, recall of 62%, and F1 Score 

of 61%. Decision Tree achieved an accuracy of 68%, precision of 66%, recall of 66%, and F1 Score 
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of 66%. Support Vector Machine achieved an accuracy of 68%, precision of 66%, recall of 66%, 

and F1 Score of 66%.    

 

Dengue Fever Disease Dataset 

Figure 5 Classification results graph of the Dengue Fever Disease Dataset 

 

     
 

 

     
In the above figure, it can be observed that the classification model results from the three scenarios 

are different. In the first scenario without discretization, Naïve Bayes achieved an accuracy of 36%, 

precision of 65%, recall of 62%, and F1 Score of 61%. Decision Tree achieved an accuracy of 49%, 

precision of 57%, recall of 52%, and F1 Score of 52%. Lastly, Support Vector Machine (SVM) 

achieved an accuracy of 49%, precision of 57%, recall of 52%, and F1 Score of 52%. 

In the second scenario, applying Equal-Width discretization using k = 12, all three models had 

different outcomes. Naïve Bayes achieved an accuracy of 42%, precision of 43%, recall of 42%, 

and F1 Score of 42%. Decision Tree achieved an accuracy of 47%, precision of 51%, recall of 43%, 

and F1 Score of 45%. Support Vector Machine achieved an accuracy of 47%, precision of 51%, 

recall of 43%, and F1 Score of 45%. 
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In the last scenario, using equal-frequency discretization with k = 6, all three models had different 

outcomes. Naïve Bayes achieved an accuracy of 89%, precision of 88%, recall of 88%, and F1 Score 

of 88%. Decision Tree achieved an accuracy of 98%, precision of 98%, recall of 98%, and F1 Score 

of 98%. Support Vector Machine achieved an accuracy of 91%, precision of 92%, recall of 92%, 

and F1 Score of 91%.    

DISCUSSIONS 

 In this research, the author compared the performance of unsupervised equal-width and equal-

frequency discretization on three different datasets with varying sizes. We used three classification 

models, Naïve Bayes, Decision Tree, and Support Vector Machine, to examine the effect of data size on 

the discretization performance. The study's results showed that the data size influences the performance 

of the discretization methods. For the small-sized dataset (dengue fever dataset), equal-frequency 

discretization provided the best performance, with an accuracy improvement ranging from 49% to 98%. 

For the medium-sized dataset (COVID-19 dataset), equal-width discretization yielded the best 

performance, with an accuracy improvement ranging from 66% to 71%. 

Meanwhile, for the large-sized dataset (congestion traffic dataset), equal-frequency discretization also 

gave the best performance, with an accuracy improvement ranging from 61% to 94%. Significant 

accuracy improvements were also observed in recall, precision, and F1 score values. The table indicates 

that the average improvement occurred in processing the small-sized dataset, the dengue fever dataset, 

with 150 data points. A difference from previous studies is that this research used three datasets with 

different complexities of data features. These datasets were combined with two unsupervised 

discretization methods in the three commonly used classification models. (Tsai et al., 2019). 

Several previous experiments on optimizing Naïve Bayes algorithms by discretization have been 

undertaken. (Saleh et al., 2020) used the Naïve Bayes algorithm for classifying student majors and 

applied the equal-width interval discretization method to improve the classification accuracy using the 

Naïve Bayes algorithm. The results showed that implementing discretization increased the accuracy of 

the Naïve Bayes algorithm from 90% to 92.8%. Another study by (Nugroho et al., 2022) also used the 

Naïve Bayes algorithm for classifying study programs for prospective new students and applied the 

equal-width interval discretization method to improve the classification accuracy using the Naïve Bayes 

algorithm. The results showed that the classification using the Naïve Bayes algorithm with discretization 

resulted in higher accuracy, namely 97.66%, compared to without discretization, which resulted in lower 

accuracy of 96.68%. 
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CONCLUSION 

This study evaluated the performance of unsupervised equal-width and equal-frequency 

discretization on datasets of varying sizes compared to previous research papers. The three tested 

scenarios allowed us to observe how these methods interpret and classify datasets with different 

complexities. Our findings align with existing research, indicating that data complexity plays a crucial 

role in the effectiveness of discretization methods. Notably, equal-frequency discretization 

demonstrated significantly improved accuracy across various classification models in both datasets 

(Congestion Traffic and Dengue Fever Disease). Equal-frequency discretization was observed to 

perform optimally on datasets with lower data complexity or fewer features. In comparison, equal-width 

discretization showed better outcomes for datasets with higher complexity and more features. This 

research can aid in selecting the appropriate discretization method based on the complexity of data 

features. For future studies, other discretization methods can be explored to compare their performance, 

address data imbalances, and utilize larger datasets to enhance accuracy. 
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