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Abstract: Stochastic programming problems arise as mathematical models 

for optimizing problems under stochastic uncertainty. Computational 

approaches for solving these models often involve approximating the 

underlying probability distribution with a probability measure that has finite 

support. To mitigate the computational complexity associated with 

increasing the number of scenarios, it may be necessary to reduce their 

quantity. The scenario 𝜉𝑢∗
 is selected as the first element of supp(𝑄), and the 

separable structure is used to determine the second element of supp(𝑄) while 

keeping the first element fixed. The process is repeated to establish the 

remaining indices, and each subsequent scenario is reduced accordingly. This 

iterative process continues until scenario 𝑁 − 𝑛 is reduced. 

 

Keywords: Scenario reduction, Two-stage, Stochastic programming 

 

INTRODUCTION 

(Dantzig, 1955) developed the stochastic programming model in 1955. Stochastic programming is 

a type of mathematical programming that has an objective function or uncertainty constraint that is 

represented by a probability distribution. When some or all parameters are uncertain, decision makers 

will choose to minimize risk. Even if uncertainty is precisely defined, it must be prepared in detail in 

practice with several scenarios as a possible result of the data, in the specification and accuracy of the 

combined probability distribution. 

In general, approximation of the discrete probability distribution limits is applied to tractable 

problems. Any random event or combination of random events that is included in scenario creation, with 

each scenario having a different probability of occurring. If a problem's scenario expands into multiple 

scenarios over time, the boundaries become more complicated, necessitating the use of branched 

models. Because only one of the best scenarios will be chosen, the others must be eliminated. The 

stochastic programming problem must be specified in order to take each scenario into account. The 

specification in this study is limited to a two-step linear stochastic program. 

Production planning (Fleten & Kristoffersen, 2008), scheduling (Birge & Dempstert, 1996), routing 

(Kenyon & Morton, 2003), allocation (Li et al., 2009), capacity expansion (Ahmed et al., 2003), energy 

investment (Hemmati, 2019), environmental control and management (Dupačová et al., 1991; Niknam 

et al., 2012), water management (Huang & Loucks, 2000), pertamina (Dempster et al., 2000), portfolio 

investment (Chen & Yang, 2017), inventory (Doğru et al., 2010), and other applications (Shapiro et al., 

2021) are examples of stochastic program applications. 

The best decision is determined by the quality of the scenario model, the depiction of the process’s 

influence, the uncertainty of the objective/cost function parameters, and the constraints. Decisions in the 

formation of scenarios may become more complex as the number of scenarios increases, necessitating 

the use of techniques to reduce these scenarios. This is accomplished by lowering the number of decision 

lines. The goal is to find a scenario subset of known cardinals. Probability metrics are used to calculate 

https://doi.org/10.33395/sinkron.xxx.xxx
mailto:prisaisinaga@gmail.com
mailto:tulus@usu.ac.id
mailto:mawengkang@usu.ac.id


 

 

Sinkron : Jurnal dan Penelitian Teknik Informatika 

Volume 8, Number 3, July 2023 

DOI : https://doi.org/10.33395/sinkron.v8i3.12753  

e-ISSN : 2541-2019 

 p-ISSN : 2541-044X 
 

 

Tulus 
  

 
This is an Creative Commons License This work is licensed under a Creative 
Commons Attribution-NonCommercial 4.0 International License. 1822 

 

the set closest to the initial distribution. A heuristic algorithm is used in this study to select the scenario 

that will be reduced. 

The stochastic program problem is generally stated as follows: 

 

min {𝐸(𝑓0(𝑥, 𝜉)) = ∫ 𝑓0(𝑥, 𝜉)𝑃(𝑑𝜉)

 

𝑅𝑆

: 𝑥 ∈ 𝑋} 

(1) 

In the model, 𝑋 represents a closed subset of 𝑅𝑚 that maps the function 𝑓0 from 𝑅𝑚 × 𝑅𝑠 to the real 

number �̅� = 𝑅 ∪ {−∞, +∞} R. 𝐸 denotes the expectation operator with respect to the probability 

distribution 𝑃, where 𝑃 is defined on the space 𝑅𝑠. To handle these models, numerical approximations 

are commonly employed. One approach involves replacing the original probability distribution 𝑃, which 

is defined on a continuous space, with a set of (𝜉1, … , 𝜉𝑁) scenarios denoted as 𝜉𝑖 that occur with 

probability 𝑝𝑖 > 0, 𝑖 = 1, … , 𝑁 and ∑ 𝑝𝑖 = 1𝑛
𝑖=1 . This approximation allows for the simplification and 

computational tractability of the model. 

min {∑ 𝑝𝑖𝑓0(𝑥, … , 𝜉𝑖)

𝑁

𝑖=1

: 𝑥 ∈ 𝑋} 

(2) 

The choice of approximation method for a stochastic program depends on the properties of the 

integrand function 𝑓0(𝑥, … , 𝜉𝑖) and the characteristics of the probability distribution 𝑃. However, 

evaluating 𝑓0 on pairs of (𝑥, 𝜉) can be computationally expensive. In numerical stochastic programming, 

this poses a challenge as the optimal approximation of 𝑃 often requires a large number of scenarios 𝑁. 

However, as the search for a solution progresses, the goal is to reduce the number of scenarios. 

The optimization problem with uncertain parameters relies on considering multiple decision 

scenarios, typically denoted as 𝑛 out of 𝑁 scenarios. As the problem evolves over time, these scenarios 

can lead to various branching possibilities, resulting in complex boundaries. To address this complexity, 

a technique known as scenario reduction is employed to optimize the objective by reducing the number 

of scenarios involved. This technique helps streamline the problem and make it more manageable by 

focusing on the most influential or representative scenarios. By reducing the number of scenarios, the 

optimization process becomes more efficient and effective. 

To address this, decision makers can utilize the information obtained from (𝜉1, … , 𝜉𝑁) and employ 

scenario reduction techniques to improve the approximation of 𝑃 using a smaller number of scenarios 

𝑛. In this paper, scenario reduction is applied to a two-stage linear stochastic program. The study aims 

to efficiently reduce the number of scenarios and facilitate the search for the optimal solution in the 

stochastic program. 

 

LITERATURE REVIEW 

In the implementation of a stochastic programming model, a crucial step is to model the random 

parameters that capture the inherent uncertainty. This uncertainty can be expressed using a multivariate 

continuous distribution or a discrete distribution, depending on the required number of outcomes. In 

stochastic programming formulations with discrete distributed parameters, these discrete scenarios are 

often organized in a scenario tree structure, where each node corresponds to a specific stage. 

Scenario reduction techniques have been extensively studied in stochastic programming. In the 

literature, three common methods for constructing scenario trees are discussed. The first method 

involves generating scenarios by sampling paths based on given data. These paths can be determined 

through distributions or obtained from historical observations. Researchers like (Consiglio et al., 2014; 

Mulvey & Vladimirou, 1991) have developed global scenario systems that can simulate any desired path 

using calibration models. (Wang, 2010), on the other hand, employed multivariate autoregression 

models to generate paths for various applications in finance, hydropower planning, and water resource 

management. 
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Once the paths are generated, the next step is to construct the scenario tree structure based on the 

model's horizons and stages. This process can be carried out using ad-hoc methods, where paths are 

intuitively cut and pasted to form the desired structure. Another option is to use cluster analysis 

techniques, which aim to produce an optimal scenario tree structure through stochastic approximation 

methods. These approaches help in reducing the number of scenarios while maintaining the essential 

characteristics of the uncertainty, making the stochastic programming model more computationally 

tractable and efficient. 

(Kuhn, 2006) developed the second method by directly generating scenario trees from curvature 

sequences. The Morkov data structure is used to generate conditional scenarios while keeping the 

previous decision tree structure in mind. The most recent technique involves sampling important 

sequences. The tree is updated in each iteration of this algorithm, and the main path samples that have 

been selected or previously realized are deleted based on the estimated node importance in the current 

iteration. The resulting tree is dynamic, and the method's efficiency is determined by the sample used. 

(Consiglio et al., 2014)’s third method is more flexible than the previous two methods and is 

appropriate for more complex distributions with a number of constraints. Specifically, the distance 

between the generated results and the set value is minimized. Although this method is adaptable, the set 

of relevant scenarios is determined by the problem and set selection. This will have an effect on the 

model's accuracy, implying that the scenario tree is oriented to the existing problem. 

In practice, however, the size of the scenario tree can quickly grow, causing the stochastic 

programming problem to become enormous. As a result of memory constraints, performing a search is 

difficult. To solve this large problem, (Heitsch & Römisch, 2003) reduce one of the scenarios, so that 

the problem of a large scenario size is broken down into smaller subproblems. When this is implemented, 

the main problem, which provides a lower bound, is formulated first, followed by a subproblem for each 

scenario. Upper bounds and deductions from the main problem are generated by combining all of the 

subproblems. The lower and upper bounds eventually converge on the best solution. 

In contrast to the sampling procedure, which may necessitate the implementation of parallel 

computations, (Dupacová, 1995)’s scenario reduction method performs a one-time reduction of paths or 

scenario trees. Two heuristic algorithms are used to choose the subset of scenarios with the smallest 

distance to the original set of scenarios. (Beltratti et al., 1999) divides scenario trees into optimal 

scenario trees and keeps certain scenario fractions from each cluster to represent stochastic conditions. 

Various methods have been proposed for constructing scenario trees in stochastic programming 

models. (Higle et al., 2010; Sen & Higle, 2000) developed a heuristic method that decomposes 

multivariate problems into univariate ones and utilizes simulation and iterative procedures to construct 

scenario trees. (Høyland et al., 2003) focused on evaluating the quality of scenario building methods for 

stochastic programs and established minimum requirements for their use. (Hochreiter & Pflug, 2002) 

approached scenario tree construction as a multidimensional facility placement problem. Robert 

proposed scenario reduction techniques based on probability metrics to determine a subset of scenarios 

that closely approximate the initial distribution. 

These methods aim to improve the efficiency and accuracy of stochastic programming models by 

reducing the number of scenarios or constructing scenario trees that capture the essential characteristics 

of uncertainty. The effectiveness of these techniques has been demonstrated through numerical 

examples and comparative analyses. 

 

METHOD 

Stochastic Programming 

Many decision-making problems can be effectively represented using a mathematical programming 

approach, with the objective of achieving optimal outcomes. The determination of these optimal 

decisions is contingent upon various constraints, encompassing factors such as human resources, capital 

availability, environmental considerations, capacity limitations, and others. The decisions themselves 

are expressed in terms of variables, which can take on either discrete or non-negative values. Goals and 

constraints within the mathematical program are formulated as functions of the relevant data, such as 

unit costs, average production, sales figures, or capacity constraints (Paul & Zhang, 2019). 

https://doi.org/10.33395/sinkron.xxx.xxx
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Let us consider the decision variable (𝑥1, … , 𝑥𝑛), wherein 𝑥𝑛 represents the 𝑖-th production of 𝑛 

products. The general formulation of the mathematical program can be expressed as follows: 

 

min 𝑓(𝑥1, … , 𝑥𝑛) (3) 

subject to: 

𝑔𝑖(𝑥1, … , 𝑥𝑛) ≤ 0 

𝑖 = (1, … , 𝑚) 

𝑥𝑛 ∈ 𝑅 

 

where 𝑋 is the set of nonnegative real numbers. 

Stochastic programming problems encompass a range of types, including linear, integer, mixed 

integer, and nonlinear programming problems, each exhibiting specific characteristics associated with 

the stochastic nature of the data. Hence, it can be asserted that: 

1. In deterministic mathematical programs, the data or coefficients involved are specific numbers 

with known and fixed values. These values are not subject to uncertainty or variability. 

2. In contrast, stochastic programming introduces uncertainty into the data or coefficients used in 

the mathematical program. These uncertain values are represented by probability distributions, 

reflecting the range of possible outcomes or scenarios. The actual value of the coefficient is not 

known with certainty but rather follows a probability distribution, capturing the uncertainty 

associated with the problem. 

The stochastic program is a mathematical framework designed to address decision-making 

situations that involve uncertainty (Hu et al., 2017). This uncertainty is typically characterized by 

probability distributions assigned to one or more parameters within the constraint function and the 

objective function. While the underlying uncertainty is well-defined, in practical applications, specific 

scenarios and composite probability distributions are often utilized to represent the possible outcomes 

of the uncertain data. The general outcomes are typically described within the scope of a set denoted as 

𝑤 ∈ 𝑊. 

When certain data elements are stochastic or random, the optimal solution and objective value of 

the optimization problem also become random. The following are the fundamental models commonly 

employed in stochastic programming. 

 

Anticipatory model 

This model is commonly referred to as a static model, wherein decisions are made without 

considering any observations or future events. Effective planning necessitates the consideration of all 

potential future scenarios, as there will be no opportunity to update or modify decisions once they have 

been implemented. 

In the anticipatory model, feasibility is expressed through probabilistic constraints. For instance, the 

desired level of reliability, denoted as 𝛼, where 0 < 𝛼 ≤ 1, is specified, and the constraints are 

formulated as follows: 

𝑃{𝑤|𝑓𝑖(𝑥, 𝑤) = 0, 𝑗 = 1, … , 𝑛 ≥ 𝛼} 

(4) 

In the anticipatory model, the decision variable vector 𝑥, with a dimension of 𝑚, is subjected to 

certain constraint characteristics. Specifically, the constraint function 𝑓𝑗: ℜ𝑚 × Ω → ℜ, 𝑗 = 1, … , 𝑛, 

indicating the desired constraints. Additionally,  Ω𝑛 represents the set of all random events, 

encompassing the uncertainty in the problem. 

The objective function in the anticipatory model can also take the form of a reliability measure, 

denoted as 𝑃{𝑤|𝑓0(𝑥, 𝑤) ≤ 𝛾}, where 𝑓0: ℜ𝑚 × Ω → ℜ represents the objective function and 𝛾 is a 

constant. The aim is to select policies that satisfy the given constraint characteristics and optimize the 

objective function. In summary, the anticipatory model seeks to identify policies that fulfill the 

prescribed constraint conditions and achieve the objectives outlined in the problem. 
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Adaptive models 

In this model, information related to uncertainty is partially available before the decision-making 

process, enabling optimization within the confines of the available information. Let 𝐴 represent the 

collection of relevant information derived from observations, which is a subset of all possible events. 

The decision variable 𝑥 is dependent on observable events and is referred to as 𝐴-adapted or 𝐴-measured. 

The formulation of an adaptive stochastic program can be expressed as follows: 

min 𝐸[𝑓0(𝑥(𝑤), 𝑤|𝐴)] (5) 

subject to: 

𝐸[𝑓𝑗(𝑥(𝑤), 𝑤|𝐴)] = 0 

𝑗 = 1, … , 𝑛 

𝑥(𝑤) ∈ 𝑋 

 

The mapping of 𝑥: Ω → 𝑋 represents a relationship where 𝑥(𝑤) is a measured outcome based on the 

available information 𝐴. The adaptive stochastic program is formulated by solving a deterministic 

program for each possible scenario 𝑤. This can be achieved by solving the following deterministic 

program for each scenario w: 

 

min 𝐸[𝑓0(𝑥,∙)|𝐴](𝑤) (6) 

subject to: 

𝐸[𝑓𝑗(𝑥,∙)|𝐴](𝑤) = 0 

𝑗 = 1, … , 𝑛 

𝑥(𝑤) ∈ 𝑋 

 

There are indeed two extreme cases: complete information and no information. In the case of 

complete information, the model takes the form of an anticipatory model. This means that all relevant 

information is known beforehand, allowing for comprehensive planning and optimization based on the 

available information. 

Conversely, when there is no information available, the model is referred to as a distribution model. 

This situation occurs when there is a lack of specific knowledge or data to inform the decision-making 

process. In such cases, the distribution model becomes particularly appealing as it utilizes probability 

distributions and statistical techniques to make decisions under uncertainty. The distribution model is 

especially useful when only partial information is available, providing a framework to incorporate 

uncertainty into the decision-making process. 

To summarize, the two extreme cases are complete information leading to an anticipatory model, 

and no information leading to a distribution model, which becomes more attractive when only partial 

information is available. 

 

Equivalent deterministic formulation 

Based on the provided information, the linear stochastic program model can be represented as 

follows: 

min 𝑔0(𝑥, 𝜉) (7) 

subject to: 

𝑔𝑖(𝑥, 𝜉) ≤ 0 

𝑖 = 1, … , 𝑚 

𝑥 ∈ 𝑋 ⊂ ℜ𝑛 

Here, 𝑥 is the decision variable vector, 𝜉 is a random vector that varies within the set Ξ ⊂ ℜ𝑘, and 

𝐹 represents the family of events that is a subset of Ξ. The probability distribution 𝑃 is known for the 

events in 𝐹, and for every event 𝐴 ∈ 𝐹 A ∈ F, its probability 𝑃(𝐴) is also known. Additionally, the 

function 𝑔𝑖(𝑥,∙): Ξ → ℜ∀𝑖 represents a random variable with probability distribution 𝑃, which is 

assumed to be independent. 

https://doi.org/10.33395/sinkron.xxx.xxx
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Scenario on Stochastic Program 

In many practical applications, it is common for the distribution of a random variable to be either 

unknown or too complex to handle directly in a stochastic programming model. In such cases, an 

approach is taken to select a representative set of outcomes known as scenarios to capture the 

randomness of events. 

Scenarios are a reduced set of possible outcomes that are chosen to represent the uncertain variables 

in the problem. These scenarios can be derived from various sources, such as quartiles of known 

distributions, historical data, predictions, or through simulation methods. Each scenario is assigned a 

probability value, reflecting the likelihood of its occurrence. 

In the context of multi-stage models, scenario information can be organized and represented using 

a scenario tree structure. This scenario tree provides a visual representation of the decision problem over 

multiple stages. Each node in the tree represents a specific stage of the problem, and the branches 

emanating from each node represent different possible scenarios or outcomes at that stage. 

Figure 1 illustrates an example of a decision problem that has been presented using a scenario tree 

for a four-stage problem. This visual representation helps to understand the sequential nature of the 

decision-making process and the uncertainty associated with each stage. 

By incorporating scenarios and their associated probabilities, stochastic programming models can 

effectively capture and analyze the uncertainty in decision-making, providing insights into optimal 

strategies under various possible outcomes. 

 
Figure 1. Scenario Tree 

In a scenario tree structure, the root node represents the current time or known information, while 

each subsequent stage denotes a different point in time or part of the data that is uncertain. At each stage, 

there are multiple possibilities or branches, and each possibility leads to different potential outcomes at 

the next stage. 

A scenario in this context refers to a complete path from the root node to a leaf node, encompassing 

all the stages and corresponding branches traversed. 

Let’s consider a scenario tree with 𝑇 stages. The possible outcomes in each stage can be sequentially 

labeled as 𝐾𝑡, where 𝑡 = 1, … , 𝑇. Additionally, within each stage, the branches can be sequentially 

labeled as 𝑘𝑡, where 𝑘𝑡 = 1, … , 𝐾𝑡 for all 𝑡. 

The direct derivative in time 𝑡 of a particular branch or knot 𝑘 is denoted as 𝐷𝑡(𝑘). For instance, in 

Figure 1 of the scenario tree, 𝐷3(1) represents the direct derivative of knot 1, which refers to the leftmost 

two knots at time 3. 

At the final stage 𝑇, for each knot 𝑘, let 𝑃𝑡
𝑘 denote the associated probability of that scenario 

occurring. However, for stages 𝑡 = 𝑇 − 1, … ,1, the probability 𝑝𝑡
𝑘 pkt is determined as follows: 

 

𝑝𝑡+1
𝑘 = ∑ 𝑝𝑡+1

1

1∈𝐷+1…

 

(8) 

With 𝑝1 = 1. 
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Decision trees in stochastic programming offer flexibility for modelers to select and prioritize 

important scenarios. Considering too many scenarios can be impractical, especially for problems with 

numerous random factors. By focusing on relevant scenarios, decision trees help manage computational 

complexity and provide valuable insights for decision-making under uncertainty. 

 

Two-stage stochastic programming 

Recursive problems in stochastic programming are not limited to two-step formulations. They can 

involve multiple stages where observations are made, and information is revealed over time. This 

information is captured in the information pool 𝐴𝜏. Each stage corresponds to a specific time when 

decisions can be made based on the available information (denoted by 𝑇(𝑤) matrix).  

A double-stage stochastic program with recourse incorporates a recourse problem at each stage 𝜏, 

conditioned on the information provided by 𝐴𝜏. This includes all information originating from the 

information set 𝐴𝜏 for subsequent stages 𝑡 = 𝜏 + 1, … , 𝑇. 

Let 𝑤 be a random vector with supports Ω = Ω1 × … Ω𝑇 , representing the set of products of 

individual support sets Ω𝑡 for 𝑡 = 1, … , 𝑇. The first-stage variable vector is denoted as 𝑦0, and for each 

stage 𝑡 = 1, … , 𝑇, it is defined as the recourse variable vector y𝑡 ∈ 𝑅𝑀𝑛. The problem involves random 

cost functions 𝑞(y𝑡 , w𝑡) and random parameters {T𝑡(w𝑡), Ω𝑡(w𝑡), h𝑡(w𝑡)|w𝑡 ∈ Ω}. 

The double-stage stochastic program extends the two-stage model and is formulated as a grouped 

optimization problem: 

min 𝑓(𝑦0) ∗ 𝐸 [ min
𝑦1∈𝑅+

𝑀1
𝜉(𝑦1, 𝑤1) + ⋯ + 𝐸 [ min

𝑦𝑇∈𝑅+
𝑀𝑇

𝜉(𝑦𝑇 , 𝑤𝑇)] + ⋯ ] 

(9) 

Subject to: 

𝑇𝑇(𝑤𝑇)𝑦𝑇−1 + 𝑊𝑇(𝑤𝑇)𝑦𝑇 = ℎ𝑘(𝑤𝑇) 

𝑇 = 1, … , 𝑇 

𝑦0 ∈ 𝑅+
𝑀0 

 

Discrete probability distributions and finite distributions allow the multi-stage stochastic 

programming model to be reformulated as a deterministic large-scale non-linear program. This 

equivalent formulation incorporates uncertainty and enables decision optimization under various 

scenarios. The resulting deterministic program involves expanding variables and constraints to account 

for all possible scenarios. Solving this program involves optimizing the objective function while meeting 

the expanded constraints, using established optimization techniques. 

 

RESULT 

In general, the stochastic programming problem is formulated as follows: 

min {𝐸(𝑓0(𝑥, 𝜉)) = ∫ 𝑓0(𝑥, 𝜉)𝑃(𝑑𝜉): 𝑥 ∈ 𝑋

 

𝑅𝑆

} 

(10) 

where 𝑋 represents a closed subset of 𝑅𝑚, 𝑓0 is a mapping function from 𝑅𝑚 × 𝑅𝑆 to real numbers 

�̅� = 𝑅 ∪ {−∞, +∞}, and 𝐸 denotes the expectation operator with respect to the probability distribution 

𝑃 defined on the sample space 𝑅𝑆. 

Suppose 𝜉 = {𝜉𝑡}𝑡=1
𝑇  denotes a 𝑑-dimensional discrete-time stochastic process, where each 𝜉𝑡 is a 

random vector and 𝑡 ∈ 1, … , 𝑇. The objective is to find the decision vector 𝑥𝑡  that minimizes the total 

cost. The optimization model can be formulated as: 

https://doi.org/10.33395/sinkron.xxx.xxx
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min {𝐸 (∑ 𝑓𝑡(𝑥𝑡 , 𝜉𝑡)

𝑇

𝑡=1

) : 𝑥𝑡 ∈ 𝑋𝑡 , ∑ 𝐴𝑡𝜏(𝜉𝑡)

𝑡−1

𝜏=0

𝑥𝑡−𝜏 = ℎ𝑡(𝜉𝑡), 𝑡 = 1, … , 𝑇} 

(11) 

The set 𝑋𝑡 typically represents a polyhedral set but may include spherical conditions. Additionally, 

the decision vector (𝑥1, … , 𝑥𝑇) must satisfy dynamic constraints, where the decision 𝑥𝑡  depends on 

previous decisions and achieves equilibrium. The matrix 𝐴𝑡𝜏, 𝜏 = 1, … , 𝑡 − 1 (containing engineering 

parameters) and the right-hand side ℎ𝑡(𝜉𝑡) (representing demands) are random, either partially or 

entirely. The function 𝑓𝑡  represents the cost at time 𝑡 and is also random, for example, due to uncertain 

market prices. 

At time 𝑡 = 1, which represents the current condition, it is assumed to be deterministic, resulting in 

the decision 𝑥1 being deterministic as well. The next condition is modeled by the constraint 𝑥1 = 𝐸(𝑥1), 

which represents the expected value of 𝑥1, given the uncertainty captured by the stochastic process ξ. 

Thus, the stochastic program in equation (11) can be formulated as an optimization model as follows: 

min {𝑓1(𝑥1, 𝜉1) + 𝐸 (𝜙(𝑥1, 𝜉)) : 𝑥1 = 𝐸(𝑥1), 𝑥1 ∈ 𝑋1, 𝐴10𝑥1 = ℎ1(𝜉𝑡)} 

(12) 

For decision 𝑥1 at time 𝑡 = 1, 𝜉 represents the uncertainty in the subsequent data process, denoted by 

𝜉 ≔ (𝜉2, … , 𝜉𝑇). The function 𝜙 is defined to capture the dynamic constraints of the problem. 

𝜙(𝑥1, 𝜉) ≔ inf {𝐸 (∑ 𝑓𝑡(𝑥𝑡 , 𝜉𝑡)

𝑇

𝑡=2

) : 𝑥𝑡 ∈ 𝑋𝑡 , ∑ 𝐴𝑡𝜏

𝑡−1

𝜏=0

𝑥𝑡−𝜏 = ℎ𝑡(𝜉𝑡), 𝑡 = 2, … , 𝑇} 

(13) 

The solution to equation (12) provides the minimum cost in the first period, and it is expected that in 

the subsequent periods, the cost will also be minimized. This is known as the first-stage solution. The 

stochastic solution (𝑥2, … , 𝑥𝑇) obtained from equation (13) represents the second-stage solution. Thus, 

model (12) is referred to as a two-stage stochastic program. It is important to note that the first-stage 

solutions depend on probability distributions from the stochastic process 𝜉. 

In a more realistic scenario, the decision 𝑥𝑡  at time 𝑡 depends only on the available data (𝜉1, … , 𝜉𝑡), 

as the data evolves over time. This constraint is modeled using non-anticipativity constraints, defined as 

follows: 

𝑥𝑡 = 𝐸(𝑥𝑡|(𝜉1, … , 𝜉𝑡)), (𝑡 = 1, … , 𝑇) (14) 

These nonanticipativity constraints must be incorporated into each set of constraints, including 

constraints (11) and (13). The expression 𝐸(𝑥𝑡|𝜉1, … , 𝜉𝑡) in the constraint model (14) represents the 

expected condition with the random vector 𝜉1, … , 𝜉𝑡 assumed to be defined. This constraint model is 

known as nonanticipativity constraints, and the model (11) with the inclusion of (14) is referred to as a 

multi-stage stochastic program. When 𝑡 = 1, the constraints in model (14) coincide with the conditions 

𝑥1 = 𝐸(𝑥1) in model (11). 

If it is specified 𝑥 = 𝑥1 and 𝑋 ≔ {𝑥 ∈ 𝑋1: 𝑥 = 𝐸(𝑥), 𝐴10𝑥 = ℎ1(𝜉1)}, so: 

𝑓0(𝑥, 𝜉) ≔ {
𝑓1(𝑥, 𝜉1) + 𝜙(𝑥, 𝜉),

+∞,
  for 𝑥 ∈ 𝑋 and 𝜙(𝑥, 𝜉) restricted

others
 

 

The optimization model (11) takes the form of (10), assuming a feasible 𝜉 and the often-implicit 

duality condition 𝜙(𝑥, 𝜉) > −∞. In this case, a limit of 𝜙(𝑥, 𝜉) is guaranteed if a feasible decision 

(𝑥2, … , 𝑥𝑇) exists for a given 𝑥1. 
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Most approximations to the solution of model (10) are done numerically. This involves replacing the 

probability distribution 𝑃, which is limited to (𝜉1, … , 𝜉ₙ), with scenarios 𝜉𝑖 occurring with probabilities 

𝑝𝑖 > 0, 𝑖 = 1, … , 𝑁 and ∑ 𝑝𝑖 = 1𝑁
𝑖=1 . The stochastic programming model (10) is thus transformed as 

follows: 

min {∑ 𝑝𝑖𝑓0(𝑥, 𝜉𝑖): 𝑥 ∈ 𝑋

𝑁

𝑖=1

} 

(15) 

The integrant property of 𝑓0(𝑥, 𝜉𝑖) as a function of 𝜉 together with the characteristics of 𝑃 determine 

the type of approach needed in stochastic programming. When seeking solutions (12) and (13), 

evaluating 𝑓0 on the pair (𝑥, 𝜉) may be computationally expensive or require substantial time and 

memory. This poses a challenge in numerical stochastic programming, where an optimal approximation 

of 𝑃 may require a large 𝑁, but the search for a solution (15) demands a smaller 𝑁. Therefore, the 

application of the stochastic programming model solution often begins with a larger 𝑁. However, over 

time, there is a need to reduce the number of scenarios 𝑛. 

The decision-maker should leverage the information contained in (𝜉1, … , 𝜉ₙ) and determine a better 

approach for P based on the reduced n scenarios compared to the original (𝜉1, … , 𝜉ₙ). This reduction 

allows for more efficient and manageable computations while preserving the essential characteristics of 

the underlying stochastic process. 
 

Optimal Scenario Reduction 

The process of optimal scenario reduction aims to approximate the probability distribution 𝑃, which 

consists of 𝑁 scenarios 𝜉𝑖 with probabilities 𝑝𝑖, 𝑖 ∈ 𝐼 ≔ {1, … , 𝑁} by determining the probability 

distribution of 𝑄ₙ. 𝑄ₙ is the best approximation of 𝑃, considering the distance 𝑑 to the probability size, 

which involves subsets of 𝜉1, … , 𝜉ₙ with 𝑛 < 𝑁 elements. This is represented as: 

𝑑(𝑃, 𝑄𝑛) = inf {𝑑(𝑃, 𝑄): 𝑄(ℝ𝑆) = 1,  sup(𝑄) ⊂ sup(𝑃), |sup(𝑄)| = 𝑛} 

(16) 

The equivalent formulation involves expressing 𝑄𝐽 as the probability measure of ℝ𝑆 with sup(𝑄𝑗) =

{𝜉𝑖: 𝑖 ∈ {1, … , 𝑁}\𝐽} for some set of indices 𝐽 ⊂ {1, … , 𝑁}, and 𝑞𝑖, 𝑖 ∈ {1, … , 𝑁}\𝐽 becomes the 

probability of the 𝑖-th index scenario. The problem can be formulated as follows: 

min {𝑑(𝑃, 𝑄𝐽): 𝐽 ⊂ 𝐼, |𝐽| = 𝑁 − 𝑛, 𝑞𝑖 ≥ 0, 𝑖 ∈ 𝐼\𝐽, ∑ 𝑞𝑖 = 1

𝑖∈𝐼\𝐽

} 

(17) 

By solving this minimization problem, we can define several sets of indices 𝐽∗ and corresponding 

probabilities 𝑞𝑖
∗ that provide a measure of the scenario probability 𝜉𝑖 and probability 𝑞𝑖

∗ for 𝑖 ∈ {1, … , 𝑁}, 

which best approximates the original probability distribution 𝑃. 

The second problem formulation (11) in the optimal scenario reduction problem simplifies the process 

by allowing for the decomposition into an inner and outer minimization problem: 

min
𝐽

{inf
𝑞

{𝑑(𝑃, 𝑄𝐽): 𝑞𝑖 ≥ 0, 𝑖 ∈ 𝐼\𝐽, ∑ 𝑞𝑖 = 1

𝑖∈𝐼\𝐽

} : 𝐽 ⊂ 𝐼, |𝐽| = 𝑁 − 𝑛} 

(18) 

The distance 𝑑 is chosen to ensure that the stochastic program (10) remains stable with respect to 𝑑, 

providing a suitable balance between accuracy and computational efficiency. This enables efficient 

handling of large-scale stochastic programming problems by reducing the number of scenarios while 

maintaining the essential characteristics of the underlying probability distribution. 
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DISCUSSIONS 

Many large-scale optimization problems can be effectively addressed using stochastic programming 

models. The size of the problem has a direct impact on the number of scenarios incorporated in the 

model to account for uncertainty. Consequently, the computational complexity of solving such a model 

escalates with an increasing number of scenarios. The fundamental approach to determining the 

reduction of the optimal scenario commences with the assessment of the probability distribution of 𝑄𝑛. 

The outer minimization problem pertains to a combinatorial optimization problem known as the n-

median problem. This problem falls into the category of NP-hard (Nondeterministic Polynomial-Hard) 

problems. To explore the quest for an optimal solution, two simple heuristic algorithms, namely forward 

selection and backward reduction, will be employed. Forward selection facilitates the selection of 

relevant scenarios, while backward reduction enables the elimination of unnecessary scenarios. 
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