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Abstract: This research investigates Romera’s local linearization approach 

as a variance prediction method in partial least squares (PLS) regression. By 

addressing limitations in the original PLS regression formula, the local 

linearization approach aims to improve accuracy and stability in variance 

predictions. Extensive simulations are conducted to assess the method's 

performance, demonstrating its superiority over traditional algebraic 

methods and showcasing its computational advantages, particularly with a 

large number of predictors. Additionally, the study introduces a novel 

computational technique utilizing bootstrap parameters, enhancing 

computational stability and robustness. Overall, the research provides 

valuable insights into the local linearization approach's effectiveness, guiding 

researchers and practitioners in selecting more reliable and efficient 

regression modeling techniques. 
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INTRODUCTION 

Linearization is the linear approximation of a function at one point in mathematics and its 

applications. Linearization is a method used in dynamical systems to estimate the local stability of the 

equilibrium point in a system of nonlinear differential equations (Guckenheimer & Holmes, 2013; 

Mahfouf, 1999). 

Regression is a statistical method for describing the relationship between one or more independent 

variables (𝑋) and one or more response variables (𝑌). Which is expressed as 𝑌 = 𝛼 + 𝛽𝑥. The least 

squares method is used to determine the regression interpretation based on the parameters 𝛼 and 𝛽. The 

least squares method is widely regarded as the best estimating method in regression analysis, but it is 

extremely sensitive to data deviations from assumptions. If the assumption is violated, i.e., there is a 

high correlation between the independent variables (multicollinearity), the resulting estimator is still 

unbiased and consistent, but it is inefficient, so the variance of the regression coefficients is not 

minimized (overestimated). Meanwhile, if the number of independent variables is greater than the 

number of observations, the independent variable matrix structure becomes singular (Zhang & Garcia-

Munoz, 2009). 

The dependent variable (𝑌) was predicted using the independent variable (𝑋) using least squares 

regression. The least squares method is used to estimate the parameters of a simple linear regression 

model. For example, if you have a regression data set 𝑌𝑖, 𝑋𝑖 with 𝑖 = 1, 2, 3, … , 𝑛, the relationship 𝑌𝑖 and 

𝑋𝑖 in the regression equation looks like this: 
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𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝜀𝑖 (1) 

 

while the regression line equation looks like this: 

 

𝑦̂𝑖 = 𝛼 + 𝛽𝑥𝑖 (2) 

 

The error equation is now: 

 

𝜀𝑖 = 𝑦𝑖 − 𝑦̂𝑖 (3) 

 

The least squares method is used to reduce the squared error, so: 

 

𝑆𝑆𝐸 = ∑ 𝜀𝑖
2

𝑛

𝑖=1

= ∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

= ∑(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖)2

𝑛

𝑖=1

 

(4) 

 

This equation's derivative with respect to 𝛼 and 𝛽 is as follows: 

1. Derivatives in relation to 𝛼: 

 

𝑑

𝑑𝛼
𝑆𝑆𝐸 = −2 ∑(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖)

𝑛

𝑖=1

= 0 

(5) 

𝑛𝛼 + 𝛽 ∑ 𝑥𝑖

𝑛

𝑖=1

= ∑ 𝑦𝑖

𝑛

𝑖=1

 

(6) 

2. Derivatives derived from 𝛽: 

 

𝑑

𝑑𝛽
𝑆𝑆𝐸 = −2 ∑(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖)𝑥𝑖

𝑛

𝑖=1

= 0 

(7) 

𝛼 ∑ 𝑥𝑖

𝑛

𝑖=1

+ 𝛽 ∑ 𝑥𝑖
2

𝑛

𝑖=1

= ∑ 𝑥𝑖𝑦𝑖

𝑛

𝑖=1

 

(8) 

We get and by substituting (5) – (8) as follows: 

 

𝛼 =
(∑ 𝑌𝑖)(∑ 𝑋𝑖

2) − (∑ 𝑋𝑖)(∑ 𝑋𝑖𝑌𝑖)

𝑛 ∑ 𝑋𝑖
2 − ∑ 𝑌𝑖

2  

(9) 

𝛽 =
𝑛 ∑ 𝑋𝑖𝑌𝑖 − (∑ 𝑋𝑖)(∑ 𝑌𝑖)

∑ 𝑋𝑖 − (∑ 𝑋𝑖)2  

(10) 

Principal component analysis and multiple regression are combined in partial least squares 

regression (PLSR). The objective is to forecast a set of response variables (𝑌) from a set of predictor 

variables (𝑋). This prediction is obtained by extracting a number of components from the predictor 

variables known as latent variables. 
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Least squares regression can make predictions if a 𝑌 vector and an 𝑋 matrix have full power. If the 

number of predictors exceeds the number of observations and 𝑋 is incomplete or singular, the least 

squares regression approach is no longer appropriate because 𝑋 has a multicollinearity problem. 

PLSR will retrieve the 𝑋 components that are also relevant to 𝑌. This is accomplished by 

simultaneously decomposing 𝑋 and 𝑌 with the constraint that these components explain as much of the 

covariance between 𝑋 and 𝑌 as possible. This decomposition process is followed by a regression stage 

in which the 𝑋 decomposition results are used to predict 𝑌. 

If 𝑋 is of size 𝑁 × 𝐾 (𝑁 is the number of observations and 𝐾 is the number of predictor variables), 

it consists of vector 𝑋𝑘, 𝑘 = {1,2, … , 𝐾}, and 𝑌 is of size 𝑁 × 𝑀 (𝑀 is the number of response variables). 

The PLSR method generates several new components that will model 𝑋 and 𝑌. These new components 

are known as 𝑋 scores, and they are recorded as 𝑡𝑎, 𝑎 = {1,2, … , 𝐴}. The 𝑋 score is a linear combination 

of the original variables 𝑋𝑘 with weights, as recorded by the vector 𝑤𝑘𝑎, 𝑎 = {1,2, … , 𝐴}. The procedure 

can be stated as follows: 

 

{𝑡𝑖𝑎 = ∑ 𝑥𝑖𝑘𝑤𝑘𝑎, 𝑖 = 1,2, … , 𝑁 

𝑇 = 𝑋𝑊
 

(11) 

(Romera, 2010) made predictions using the formulation of partial least squares regression and 

approached it linearly. In this case, Romera suggested an alternative computational approach using 

bootstrap parameters. 

The purpose of this study is to compare and evaluate the method used with the following suggestions 

and to assess the formulas described by (Romera, 2010). Hopefully, this research can be beneficial in 

addressing regression problems, particularly those related to partial least squares regression, as well as 

decision-making problems in uncertain scenarios. 

 

METHOD 

Regression Formulas 

Given a calibration model and predictions from random data, the relationships can be described as 

follows: 

 

Calibration Model: 

𝑦̇𝑐 = 𝛽0 + 𝑋̇𝑐𝛽 + 𝜖, 
Prediction Model: 

𝑦̇𝑝 = 𝛽0 + 𝑋̇𝑃𝛽 + 𝜖, 

Where: 

𝑦̇𝑐 is the un-centered calibration response variable. 

𝑦̇𝑝 is the un-centered prediction response variable. 

𝑋̇𝑐 (𝑛 × 𝑘) is the matrix of centered calibration data variables. 

𝑋̇𝑝 (𝑛𝑝 × 𝑘) is the matrix of centered prediction data variables. 

𝛽 is the vector of regression coefficients (𝛽0 and 𝛽 (𝑘 + 1) in this case). 

𝜖 is the error term with a normal distribution having a mean of 0 and variance 𝜎𝜖
2. 

The dot above variables (e.g., 𝑦̇𝑐) indicates that they are un-centered variables, and they correspond 

to the centered variables for 𝑦𝑐. 

 

Orthogonal Score Algorithm 

The orthogonal scoring algorithm, developed by (Martens & Naes, 1992), is highly regarded for its 

simplicity, stability, and widespread utilization in various fields. When the factor number 𝑎 is chosen, 

each step of the algorithm yields the outcome for the respective factor 𝑖, 𝑖 = 1, 2, ⋯ , 𝑎. This step-wise 

approach facilitates the determination of results corresponding to each factor, offering valuable insights 

and analyses for a range of applications. 
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Calibration 
 

The algorithm initiates its process from the midpoint of the matrix data calibration, 

 
𝑥𝑐1

= 𝑥𝑐 

𝑤𝑖 = 𝑋𝑐𝑖
′ 𝑦𝑐 

𝑡𝑖 = 𝑋𝑐𝑖
′ 𝑤𝑖 

 𝑞𝑖 =
𝑦𝑐𝑖

′ 𝑡𝑖

𝑡𝑐𝑖
′ 𝑡𝑖

 

𝑋𝑐𝑖+1
= 𝑋𝑐𝑖

− 𝑡𝑖𝑝𝑖
′ 

 
During the 𝑖-th step of the algorithm, the weight vector, denoted as 𝑤𝑖(𝑘 × 𝑙), is determined based on 

the covariance between the column vector 𝑋𝑐𝑖
 and 𝑦𝑐. The scores matrix of size 𝑛 × 𝑎, represented by 

𝑇 = (𝑡1,  𝑡2, ⋯ , 𝑡𝑎 ), and the 𝑥-loading matrix 𝑥 × 𝑎 (𝑝 = (𝑝1,  𝑝2, ⋯ , 𝑝𝑎 )) are calculated. Additionally, 

the 𝑦-loading vector 𝑞 is defined as a column vector 𝑎 × 1. 

In the first step, if the size of the weight vector 𝑤𝑖 is only one element in length, the algorithm remains 

stable. This characteristic facilitates the comparison of scores and does not alter the estimated regression 

coefficients, even though its normalization does not undergo any changes. Notably, (Helland, 1988) 

demonstrated that the regression coefficient for partial least squares can be expressed as follows: 

 

𝛽̂ = 𝑊(𝑃′𝑊)−1𝑞 

 

Furthermore, the score can be expressed through the following equation: 

 

𝑇 = 𝑋𝑐𝑊(𝑃′𝑊)−1 

 

Predictor 
 

To estimate the predicted response variable, 𝑦̇𝑝̂, it can be generated from the 𝑥𝑝 1 × 𝑘 score. Unlike 

calibration, where 𝑡𝑖 is a column of 𝑇, the predicted score, 𝑡𝑝 = (𝑡𝑝1
, 𝑡𝑝2

, ⋯ , 𝑡𝑝𝑎
), is represented as a 

row vector, and 𝑡𝑝𝑖
 is calculated using the following steps: 

 

1. Calculate 𝑡𝑝𝑖
 as: 

𝑡𝑝𝑖
= 𝑥𝑝𝑖

𝑤𝑖 

 

2. Update the next 𝑥𝑝 score as follows: 

 

𝑥𝑝𝑖+1
= 𝑥𝑝𝑖

−𝑡𝑖𝑝𝑖
′ 

 

where 𝑥𝑝𝑖
= 𝑥̇𝑝 − 𝑥̅, and 𝑡𝑝 = 𝑥𝑝𝑊(𝑃′𝑊)−1. 

 

The prediction for the response variable is then given by: 

 

𝑦̇𝑝̂ = 𝑦̅̇ + 𝑡𝑝𝑞 

 

These calculations enable the estimation of the response variable 𝑦̇𝑝̂ using the 𝑥𝑝 scores and the 

corresponding model parameters. It is worth noting that the prediction process is distinct from the 

calibration procedure and involves updating the 𝑥𝑝 scores iteratively to obtain the final prediction for 

the response variable. 
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Random Data Sample Model 

Let 𝑐̇ be a vector (𝑘 + 1) × 1 representing the interdependent and predictive variables of one case in 

the calibration or prediction set. It can be expressed as 𝑐̇ = (𝑦̇, 𝑥̇)′, where 𝑦̇ is the response variable and 

𝑥̇ is a 𝑘 × 1 vector representing the predictor variables. The covariance between 𝑦̇ and 𝑥̇ is denoted by 

𝛾 = (𝛾1, 𝛾2, ⋯ , 𝛾𝑘)′, and the variance-covariance matrix of 𝑥̇ is denoted by Σ with elements 𝜎𝑖𝑗  for 1 ≤

𝑖, 𝑗 ≤ 𝑘. 

These parameters can be combined into an 𝑎𝑘(𝑘 + 3)/2 × 1 vector Φ = (𝛾′ 𝑣𝑒𝑐𝑢𝑡()′)′, where 

vecut is an operator that transforms a symmetric matrix into a column vector by stacking its upper 

triangular elements, including the diagonal, in column-major order. 

Let's define the 𝑘 × 1 vector 𝑠𝑥𝑦 = 𝑋𝑐
′ 𝑋𝑐 as the sum of squares for the predictor variables in the 

calibration set. Additionally, let 𝑏 = (𝑠′𝑥𝑦  𝑣𝑒𝑐𝑢𝑡(𝑆𝑥𝑥)′)′ be a vector, where 𝑠′𝑥𝑦 represents the observed 

value of the cross-product sum of squares and 𝑆𝑥𝑥 is the observed value of the sum of squares and cross-

products matrix for the calibration set. The random variable b is an unbiased estimate of (𝑛 − 1)𝜙, 

where 𝑛 is the number of cases in the calibration set. This means that, on average, the vector b provides 

an accurate estimate of the true parameter vector 𝜙, considering the calibration set's sample size (𝑛) 

minus one. 

This framework allows for the estimation of the parameters in the calibration or prediction set, 

enabling the analysis and modelling of the data in a statistically rigorous manner. 

 

Romera’s approach 

(Romera, 2010) conducted a study to assess the accuracy of the regression coefficient estimate, 𝛽̂ with 

respect to the vector 𝑏, and this estimation was based on the 𝑦-loading, 𝑞. The 𝑦-loading estimate was 

developed by observing the 𝑏0 value of 𝑏 using a first-order Taylor expansion. This can be represented 

as follows: 

𝑞𝑏 ≈ 𝑞𝑏0
+ 𝐽(𝑏 − 𝑏0) 

 

Where 𝑞𝑏 is the estimated 𝑦-loading based on the vector 𝑏, 𝑞_(𝑏₀) is the 𝑦-loading estimate at 𝑏0, and 

𝐽 is the Jacobian matrix of size 𝑎 × 𝑘(𝑘 + 3)/2, representing the first derivative of 𝑞 with respect to 𝑏, 

evaluated at 𝑏0. 𝐽 can be mathematically expressed as 𝐽(𝑎 ×
𝑘(𝑘+3)

2
). 

The estimated variance of the 𝑦-loadings, Var(𝑞), can be approximated as: 

 

𝑎𝑟(𝑞) ≈ 𝐽𝑉𝑎𝑟(𝑏)𝐽’ 
 

Here, Var(𝑏) represents the variance of the vector 𝑏. 

(Romera, 2010) then uses the relation 𝛽̂ = 𝑊𝑞, which provides the estimated regression coefficient  

𝛽̂ in terms of the 𝑦-loading vector 𝑞. To obtain an estimate of the variance of 𝑥𝑝𝛽̂, Var(𝛽̂), the following 

expression is used: 

𝑉𝑎𝑟(𝑥𝑝𝛽̂) ≈ 𝑥𝑝𝑊𝐽𝑉𝑎𝑟(𝑏)𝐽′𝑊′𝑥𝑝
′  

 

However, there are two main issues with this approach. Firstly, the equation (3) shows that 𝛽̂ =

𝑊(𝑃′𝑊)−1 for the orthogonal scoring algorithm, and not 𝛽̂ = 𝑊𝑞, which is the outcome of the PLS1 

orthogonal loading algorithm. Secondly, the weight matrix 𝑊 depends on the vector 𝑏, which means 

that 𝑊 cannot be considered correct when computing Var(𝛽̂). 

These problems need to be addressed to ensure the accuracy and validity of the regression coefficient 

estimates and their associated variances in Romera’s analysis. Further refinement and consideration of 

the algorithm and its dependencies are necessary for accurate results. 

 

Estimation of Var (𝜷̂) with Bootstrap Parameters 

In this alternative proof, the goal is to estimate the variance of the regression coefficient, 𝑉𝑎𝑟(𝛽̂), 

using bootstrap parameters. The process involves generating bootstrap samples and deriving 𝑏𝑚 values 
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from the Wishart Distribution. The estimated regression coefficient, 𝛽̂𝑚
𝛽

, is then computed based on 𝑏𝑚, 

which may yield improved results compared to using 𝑋𝑐 and 𝑦𝑐 (Haff, 1979; Wentzell et al., 2017). 

The formula representing the variance of the regression coefficient with the bootstrap algorithm is 

given by: 

𝑉𝑎𝑟(𝛽̂𝛽) =
𝑛

𝑛 + 1

1

𝑀 − 1
∑ (𝛽̂𝑚

𝛽
− 𝛽̅) (𝛽̂𝑚

𝛽
− 𝛽̅)

′
𝑀

𝑚=1

 

where 𝛽̂𝑚
𝛽

 is the estimated regression coefficient from the 𝑚-th bootstrap sample, and 𝛽̅ is the mean 

of these estimates computed as: 

𝛽̅ =
1

𝑀
∑ 𝛽̂𝑚

𝛽

𝑀

𝑚=1

 

The factor 𝑛/(𝑛 + 1) plays a role in approaching the bootstrap parameter values. 

The approximate variance of 𝑥𝑝𝛽̂ is then given as: 

𝑉𝑎𝑟(𝑥𝑝𝛽̂) ≈ 𝑥𝑏𝑉𝑎𝑟(𝛽̂𝛽)𝑥′𝑝 = 𝑉𝐵 

Where 𝑥𝑏 is a vector representing the predictor variables for the bootstrap sample and 𝑉𝐵 is the 

estimated variance of 𝑥𝑝𝛽̂ using the bootstrap algorithm. 

This approach leverages bootstrap samples to obtain more robust estimates of the variance of the 

regression coefficient, thereby enhancing the accuracy and reliability of the statistical analysis. The use 

of bootstrapping techniques can provide valuable insights when dealing with complex datasets and 

addressing potential issues with the traditional algebraic methods. 

 

RESULT 

In this extensive simulation study, the goal is to investigate the linearization (Lin) and bootstrap (Linb) 

versions under different conditions. The simulations involve creating calibration sets and prediction sets 

with size 𝑛 = 200. The explanatory variables are independent and normally distributed with mean 0 

and variance (𝜎1
2, 𝜎2

2, ⋯ , 𝜎𝑘
2) in both sets. 

For each 𝑁 × 𝑛𝑝 predictions in the simulation, the squared prediction error is calculated, and the 

variances 𝑉𝐿 and 𝑉𝐵 are estimated using equations 4 and 5, respectively. The variance formula does not 

account for the contribution of 𝑥̅̇ and 𝑦̅̇ over repetitions of the calibration set. Thus, the contribution of 

𝑦̇, 
𝜎𝜖

2

𝑛
, is added to each variance estimate, resulting in Lin’s variance formula becoming 

𝜎𝜖
2

𝑛
+ 𝑉𝐿, and 

Linb’s variance formula becoming 
𝜎𝜖

2

𝑛
+ 𝑉𝐵. 

In practice, only one value of 𝜎𝜖
2 is needed for estimation, and a fixed value can be used to focus on 

comparing the performance of 𝑉𝐿 and 𝑉𝐵. The contribution of 𝑥̅̇ is accounted for as 𝑘/𝑛2, and it is 

assumed to be negligible compared to other factors. 

To check the performance of Lin and Linb, squared error plots are generated, and 2 times the variance 

is estimated for both 𝑉𝐿 and 𝑉𝐵. The average of 20 bins defined by the abscissa variable 𝑥 is taken. These 

bins are set using percentage points from the size of the chi-square random variable with the size and 

degree chosen freely to ensure accuracy in estimating both 𝑉𝐿 and 𝑉𝐵. The number of samples is the 

same for each accuracy test per bin. 

This simulation study aims to explore the properties of the linearization and bootstrap versions under 

different scenarios, including the correlation of predictors and their extrapolation effects. By comparing 

the performance of 𝑉𝐿 and 𝑉𝐵 through squared error plots and variance estimation, the study provides 

valuable insights into the suitability and accuracy of these variance formulas for various situations. 

This simulation starts from two simulations with 𝑘 = 2 and 𝑎 = 1 so that the linearization is stable. 

1. Simulation: 𝑘 = 2, 𝑎 = 1, 𝜎1
2 = 25, 𝜎2

2 = 1, 𝛽0 = 𝛽1 = 1, 𝛽2 = 0, 𝜎𝜖
2 = 0,25, 𝑁 = 10.000 

The first variable is a predictive variable with a non-zero regression coefficient. The first has a 

much higher variance than the second, which has a zero coefficient. The PLSR performed 

admirably, as expected, and both Lin and Linb performed admirably (Fig. 1). The plot against 𝑉𝐵 
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appears to be equally promising. Fig. 2 depicts how the estimated regression coefficient varies in 

relation to 𝑏. In the linear model, 𝛽̂1 is always close to 1, whereas 𝛽̂2 is dependent on two elements 

of 𝑏. 

2. Simulation: 𝑘 = 2, 𝑎 = 1, 𝜎1
2 = 25, 𝜎2

2 = 1, 𝛽1 = 0, 𝛽0 = 𝛽2 = 1, 𝜎𝜖
2 = 0,25, 𝑁 = 10.000 

In this more challenging scenario for PLSR, the first predictor has a larger variance but no 

regression contribution, while the second predictor, with a smaller variance, is related enough to 

the response variable to gain weight in the PLSR factor. The sign changes in 𝛽̂, accompanied by 

the sign of the correlation, cause the breakdown of the linear approximation. As a result, both Lin 

and Linb methods fail, but in different ways, as illustrated in Figure 3. 

Figures 1 and 2 provide insights into the reasons why Lin fails. Fig. 3 shows the distribution of 

𝛽̂1 as a variation of 𝑏, which is bimodal, with modes switching as signs of changes in 𝑏1 and 𝑏4. 

The local linearization method fails for a set of calibrations. The blue dotted line represents 𝛽̂ 

calculated by changing 𝑏1 and recalculating the PLSR algorithm. It can be observed that 𝛽̂1 and 𝛽̂2 

vary with small changes in 𝑏1, making a linear approximation inadequate. 

Linb’s failure is less severe but still underestimates the SPE due to two reasons: bootstrapping 

undermines the true variance of 𝛽̂, and the contribution from the bias in PLSR 𝛽̂ cannot be ignored 

in this case. 

 

Fig. 1 LPSR estimates the new variance and predicted error versus 𝑉𝐿. 𝑘 = 2, 𝑎 = 1, 𝜎1
2 = 25, 

𝜎2
2 = 1, 𝛽0 = 𝛽1 = 1, 𝛽2 = 0, 𝜎𝜖

2 = 0,25. SPE: Squared Prediction Error (𝑦̇𝑝 − 𝑦̂̇𝑝)
2
. Lin: 𝑉𝐿 +

𝜎𝜖
2/𝑛. Lin: 𝑉𝐵 + 𝜎𝜖

2/𝑛. 

 

 

 

The underestimation of the variance of predictions can be explained by considering the figures, 

particularly the top left of fig. 3. In the generalized iterative training set of combined response 

distributions and predictor variables where 𝑏1 is zero-centered, 𝛽̂1 exhibits a bimodal distribution 
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with equal weight for each mode. The bootstrap estimation procedure will centre on the observation 

𝑏1, which generally will not be zero. While in bootstrap, 𝛽̂1 still tends to have a bimodal distribution 

but with unequal weights in the two modes, leading to a smaller variance compared to 𝛽̂1 in the 

repeated training set. This accounts for 20% of the difference between Linb and SPE, while the 

remaining discrepancy is attributed to substantial bias in the PLSR 𝛽̂. 

 

Fig. 2 PLSR 𝛽̂ counter 
𝑏

𝑛
 when 𝑘 = 2, 𝑎 = 1, 𝜎1

2 = 25, 𝜎2
2 = 1, 𝛽0 = 𝛽1 = 1, 𝛽2 = 0, 𝜎𝜖

2 =

0,25. 

 

 

 

Overall, this complex case highlights the limitations and challenges faced by PLSR, Lin, and 

Linb methods when dealing with predictor variables with varying variances and regression 

contributions. Understanding these limitations is crucial in applying appropriate modelling 

techniques and interpreting the results accurately. 

3. Simulation: 𝑘 = 3, 𝑎 = 2, 𝜎1
2 = 𝜎2

2 = 25, 𝜎3
2 = 1, 𝛽0 = 𝛽1 = 𝛽2 = 1, 𝛽3 = 0 𝜎𝜖

2 = 0,25, 𝑁 =
10.000 

We deliberately chose the difficult case of PLSR in the previous simulation, and it is perhaps 

surprising that the linearization failed. However, that failure appears to set a dangerous precedent. 

We have two predictor variables with large variances and strong correlations with the responses 

and predictions of the three smaller variants, and no correlation in this simulation. Linb’s bootstrap 

version is effective, but Lin's algebraic version is ineffective for some calibration sets. Fig. 3 depicts 

how the coefficient vector changes with 𝑏4 (sum of squares of the first predictor) around the 

observed value for a calibration set. As previously stated, the linear approximation has a much 

narrower range of validity and results in an overly dirty variance of 𝛽̂. 
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Fig. 3 PLSR estimates the new versus predicted variance and error (a) 𝑉𝐿 dan (b) 𝑉𝐵. 𝑘 = 2, 

𝑎 = 1, 𝜎1
2 = 25, 𝜎2

2 = 1, 𝛽1 = 0, 𝛽0 = 𝛽2 = 1, 𝜎𝜖
2 = 0,25. SPE: Squared Prediction Error 

(𝑦̇𝑝 − 𝑦̂̇𝑝)
2
. Lin: 𝑉𝐿 + 𝜎𝜖

2/𝑛. Linb: 𝑉𝐵 + 𝜎𝜖
2/𝑛. 

 

4. Simulation: 𝑘 = 24, 𝑎 = 7, 𝜎1
2 = 64, 𝜎2

2 = 49, 𝜎3
2 = 36, 𝜎4

2 = 25, 𝜎5
2 = 16, 𝜎6

2 = 9, 𝜎7
2 = 4, 

𝜎8
2 = ⋯, 𝜎24

2 = 1, 𝛽0 = 1, 𝛽1 = 8, 𝛽2 = 7, 𝛽3 = 6, 𝛽4 = 5, 𝛽5 = 4, 𝛽6 = 3, 𝛽7 = 2, 𝛽8 = ⋯, 

𝛽24 = 1, 𝜎𝜖
2 = 0,25, 𝑁 = 10.000 

So far, the simulations have only seen a small number of predictive variables. There are 𝑘 = 24 

variables and 𝑎 = 7 factors in this one. The first seven variables contain the majority of the 𝑥-

variability and predictive power, implying that the PLSR problem is simple to solve. Lin’s algebraic 

method fails again, yielding an extreme estimate of the calibration set’s variance. Fig. 3 shows the 

Linb bootstrap version in good working order. Underestimates the mean squared error slightly, 

especially at the upper end of the scale. The difference due to bias is negligible; bootstrap estimates 

the variance of better 𝛽̂. Linb is a bit faster to calculate in this example when 𝑁 is reduced to 500, 

which is large enough to give the result. Because the Lin calculation involves a matrix of size 

(𝑘 + 1)2 × (𝑘 + 1)2, namely 625 × 625 for 𝑘 = 24. Linb is a much faster solution than Lin for 

much larger problems. Because little effort has been put into optimizing good code for computation, 

a more detailed comparison would be meaningless, but it seems reasonable to conclude that Linb 

is probably faster and more stable than Lin. 
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5. Use of a real data set. 

This study was carried out through illustration/simulation with a real data set. For a real data set 

with 𝑘 greater than 100, the real data already implemented in Linb yields a reasonable variance 

value in a reasonable amount of computation time. Aside from that, there isn't much to learn. The 

method's performance cannot be evaluated with a fixed calibration set. That's analogous to 

attempting to evaluate the truth of, say, the formula for the variance of the sample mean using a 

fixed data set. Others, on the other hand, do something with arbitrary samples but require a large 

data set to produce useful results. 

 

CONCLUSION 

Although (Romera, 2010) researched his linearization method, it can be concluded that it may not be 

a suitable approach in algebraic practice. The simulations show instances of bad failure, particularly in 

the calibration set. For a real data set, it is challenging to identify these bad cases easily, and the risk is 

that a linear approximation is highly improbable. On the other hand, the bootstrap version of the method 

has proven to be much easier to implement and more stable. It has also shown fairly good performance, 

and the simulations have demonstrated limited issues. The formulation considers variance, albeit 

ignoring bias, and at least the mean squared bias can be accounted for, as explained in the previous 

section. 
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