

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 7, Number 4, October 2023

DOI : https://doi.org/10.33395/sinkron.v8i4.12819

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*Moehammad Ramadhoni

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 2327

Performance Comparison between Signature

Cryptography: A Case Study on SNAP

Indonesia

Moehammad Ramadhoni1)*, Handri Santoso2)
1,2)Universitas Pradita, Indonesia,

1)moehammad.ramadhoni@student.pradita.ac.id, 2)handri.santoso@pradita.ac.id,

Submitted : Jul 31, 2023 | Accepted : Aug 17, 2023 | Published : Oct 1, 2023

Abstract: SNAP (Standar Nasional OPEN API Pembayaran) was submitted

by several sub-working groups formed jointly by ASPI and the Bank of

Indonesia for encouraging digital transformation in the banking industry. In

the document Pedoman Tata Kelola (Bank of Indonesia, n.d.), there is the

use cryptographic algorithms that are used as validation for third parties to

use the Open API. The algorithms used in the document are HMAC and

RSA. However, there are other algorithms that can be used as a form of

validation, such as ECC and ZK-SNARK. ECC uses an elliptic curve as a

standard cryptography calculation which can use shorter keys than RSA. On

the other hand, ZK-SNARK uses a pairing-based elliptic curve which makes

verification calculations simpler. The method used as authentication in

SNAP is the third party will send the signature in the API header along with

the sent API payload. The signature describes the body payload, the endpoint

URL that was called by the third party, and the time when the API call was

made, so the signature will change all the time. In this research, the

performance of the four cryptographic algorithms is compared based on

SNAP method. The performance we compare is overall speed of process

when creating the signature and verifying it. The result is that HMAC is the

most efficient algorithm, but for financial data, it is better to use ECC which

uses asymmetric keys and is faster than RSA contained in the SNAP

document, especially when 256 bits security level that ECC could be 10

times faster then RSA.

Keywords: cryptographic, ECC, HMAC, performance, RSA, SNAP, ZK-

SNARK,

INTRODUCTION

On 16 August 2021, Bank Indonesia verified a document regarding the use of an Open API for

payments in Indonesia named SNAP (Standar Nasional OPEN API Pembayaran). This document was

initiated by many parties who are members of a sub-working group called ASPI (Asosiasi Sistem

Pembayaran Indonesia). The document already contains a chapter on standard encryption components

that are used as part of verifying every API call made by a third party.

This chapter explains the procedures for using signatures for the verification process, such as using

public and private keys, using encoding authentication in each header, and using signatures in headers.

The use of data encryption is intended as an additional security for API calls so that third parties cannot

call any API with the same signature when calling other APIs.

https://doi.org/10.33395/sinkron.v8i4.12819
mailto:email@email.com
mailto:email@email.com

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 7, Number 4, October 2023

DOI : https://doi.org/10.33395/sinkron.v8i4.12819

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*Moehammad Ramadhoni

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 2328

There are two uses of signatures in SNAP documentation, namely symmetric and asymmetric

signatures. Symmetric signature uses the HMAC-SHA512 algorithm. On the other hand, an asymmetric

signature uses the SHA256-with-RSA algorithm. Both of these signatures have an adequate good level

of security and are difficult to be attacked by the man in the middle.

The difference between the two signatures is that RSA requires a private and public key that is

generated at the beginning as a trusted key that is stored by both parties, while HMAC does not require

a trusted key, because the process of forming a signature only requires a secret key that is known by

both parties. The SHA256-with-RSA technique also requires a secret key for the SHA process in the

algorithm.

Other authentication processes are ECC and ZK-SNARK. Both use an elliptic curve which has a high

level of security with a shorter key length. With a shorter key length, the verification process becomes

faster and more efficient. This elliptic curve algorithm is used in web3 applications and blockchain

applications which are widely used today.

In this research, we will compare the signature algorithm processes on SNAP, namely HMAC-

SHA512 and SHA256-with-RSA with ZK-SNARK. ZK-SNARK is an authentication algorithm using

pair elliptic curve cryptography which can reduce the proof for verification but still with a high level of

security. The results of this comparison will lead to increased performance but still with the same level

of security.

LITERATURE REVIEW

RSA has been deemed as a secure and trustworthy algorithm among all asymmetric algorithms which

have been proposed up to now. In fact, the RSA algorithm is a compatible asymmetric cipher, since it

applies a key with various length. In this algorithm security can be assured at the expense of speed. The

typical length of RSA keys are 512- 2048 bits. Rivest et al invented RSA algorithm in 1978 (Rivest,

1978).

Considerable cryptanalysis has approved RSA as a reliable algorithm over the years. It demonstrates

that this algorithm has remarkable amount of reliability. Difficulty of factoring large numbers acts as a

core component of RSA's security. The efficiency of RSA would be ruined if it was possible to find a

simple method for factoring these large numbers.

MAC algorithms are keyed hash functions that allow to verify whether a transmitted message has

been altered. In order to use a MAC algorithm in computer networks, a secret key should be first

distributed to the authorized entities. HMAC, which was designed by Bellare, Canetti and Krawczyk, is

a standardized hash-based MAC algorithm that is widely used as a MAC algorithm and as a

pseudorandom function generator (Bellare, 1996). HMAC takes a message of an arbitrary bit-length and

hashes it with one secret key.

HMAC is proved to be a pseudorandom function under the assumption that the compression function

of the underlying hash function is a pseudorandom function (Bellare, 2006) (note that the security proof

of pseudorandomness provides the MAC security (Bellare, 2000)). However, this does not guarantee

the security of HMAC if it is instantiated with a specific cryptographic hash function such as MD5 or

SHA-1.

The utilization of elliptic curves in cryptography has been proposed for the first time by Koblitz and

Victor Miller individually in mid 1980s (Koblitz, 1987). ECC is known as a sort of PKC which is built

upon algebraic structure of elliptic curve over finite fields. ECC use computation which known as

Elliptic Curve Discrete Logarithm Problem (ECDLP). This algorithm can only be resolved in

exponential time causing ECC became a promising branch of public-key cryptography which offers

https://doi.org/10.33395/sinkron.v8i4.12819

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 7, Number 4, October 2023

DOI : https://doi.org/10.33395/sinkron.v8i4.12819

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*Moehammad Ramadhoni

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 2329

similar security to other ”traditional” DLP- based schemes, with smaller key sizes and memory

requirements, e.g., 160 bits instead of 1024 bits.

The National Institute of Standards and Technology (NIST) is a federal non-standards agency within

the U.S. Department of Commerce Administration of Technology. NIST provides specifications for

ECC that are considered safe for application in cryptography. NIST recommends elliptic curves in

binary-fields with values 2163,2233, 2248, 2409, and 2571 (Hankerson, 2000).

The basic concept of zero-knowledge proof is that the prover exchanges messages with the verifier,

where the prover tries to convince the verifier that the prover knows something without having to tell

the verifier something. Unlike interactive proofs, no-interactive proofs only require one interaction

between participants. Prover sends confidential information to a special algorithm that can calculate

zero-knowledge proofs. The proof is then sent to the verifier, which will check the confidential

information using another algorithm. Non-interactive zero-knowledge proof reduces communication

between the prover and verifier, making ZKP more efficient.

Groth (Groth, 2016) builds on NIZK's argument to satisfy an arithmetic circuit where the proof

consists of only 3 groups of elements. Due to their small size, proofs are also easier to verify. The verifier

only needs to calculate an exponential number proportional to the statement size and check the equation

for the single pairing product, which has only 3 pairs

METHOD

Based on the SNAP document from Bank Indonesia, Open API is used by third parties to access

services from banks or similar parties. To be able to access these services, an authentication process is

used using the header in the API call. The header contains signatures that are only expected to be known

by third parties and API owners so that it is expected to minimize the possibility of unauthenticated

parties being able to access and enjoy the service.

In this section, we will compare the performance of the two algorithms used in SNAP, namely RSA

and HMAC, with the cryptographic algorithms that are currently widely used, namely ECC and ZK-

SNARK. All four algorithms will be performed at the middleware level, it is the schema where

implement before the request process is performed. The process and flow for creating a signature follow

the directions in the SNAP documen t so that system development also follows the document.

Fig 1: SNAP API process

https://doi.org/10.33395/sinkron.v8i4.12819

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 7, Number 4, October 2023

DOI : https://doi.org/10.33395/sinkron.v8i4.12819

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*Moehammad Ramadhoni

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 2330

To develop the system, the Golang programming language was used. For making the API, the echo

library is used (Labstack, 2021) which has been used by many developers as the main library for API

development in the Golang language. To develop the RSA, HMAC, and ECC algorithms, the crypto

library (default library in Golang) is used, while ZK-SNARK uses the gnark library (Gautam, n.d.,

2023).

This research uses the same security level for each cryptographic algorithm used so that a cost ratio

is obtained for each time of creation and signature verification for each algorithm. Below is the algorithm

used for each cryptography.

Table 1: Key size ratio between HMAC, RSA, ECC, and ZK-SNARK

Key Size Security Level

(bits)
Key Size Ratio

HMAC RSA ECC ZK-SNARK

256* 3072 256 256 128 1:12:1:1

512* 15360 521 388** 256 1.3:40:1.3:1

*key and message must satisfied standard size so security level could be achieve

**implementation of pairing-ECC nowday max uses curve BW6-761 that could create 388 bits key with

security level 192 bits.[14]

HMAC and ECC have the same key size ratio, whereas the higher the desired security level, the higher

the key size required by RSA to achieve that security. The largest current implementation of ZK-

SNARK uses a key size of 388 bits. The size of the key will affect the output length of the signature.

Based on Table 1, at a security level of 128 bits, RSA will have an output signature 12 times longer than

HMAC and ECC, while at a security bit of 256, RSA will produce an output signature length 30 times

longer than HMAC and ECC.

 In the HMAC algorithm, it takes a key length equal to the number of algorithms used so that the

expected security level can be achieved. Otherwise, the security level will only be the same as the bit

length of the key, for example in the HMAC-SHA256 algorithm, the key length used must be 256 bits

so that the security level can be maintained with a minimum message half of 256 bits.

 The ZK-SNARK algorithm requires a circuit constraint before using the ZK-SNARK algorithm. The

circuit is needed to verify whether the prover knows the circuit and can perform calculations based on

the agreed circuit. In this research, each security level ZK-SNARK will use 2 different circuits, the first

EDDSA with 256 bits and the second with 512 bits.

RESULT

Load tests are used to obtain the performance of an application by calling the endpoint of the

application many times, serially or parallel (concurrent). In this research, a load test is carried out using

the Jmeter application. To get good results, we must isolate the machine used for the load test and each

load test must have the same environment so that stable results will be obtained for each function

measured.

https://doi.org/10.33395/sinkron.v8i4.12819

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 7, Number 4, October 2023

DOI : https://doi.org/10.33395/sinkron.v8i4.12819

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*Moehammad Ramadhoni

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 2331

Table 2: Load test result

Label
Average

(ms)

Min

(ms)

Max

(ms)
Std. Dev.

Throughp

ut

(KB/sec)

Received

KB/sec

Sent

KB/sec

Avg.

Bytes

Create_HMAC_To

ken
1 1 2 0.49 5.1 1.38 3.22 277

Verify_HMAC_To

ken
1 1 2 0.37 5.1 2.14 2.96 430

Create_HMAC_51

2_Token
0 0 5 0.78 5.1 1.6 3.28 322

Verify_HMAC_51

2_Token
1 0 2 0.45 5.1 2.14 3.2 430

Create_RSA_Toke

n
8 6 16 2.48 5.1 3.72 3.21 746

Verify_RSA_Toke

n
1 0 2 0.36 5.1 2.14 5.29 430

Create_RSA_512_

Token
477 393 583 33.69 4.91 13.48 3.14 2813

Verify_RSA_512_

Token
4 3 9 1.17 5.1 2.14 15.51 430

Create_EDDSA_T

oken
1 1 6 0.7 5.1 1.6 3.24 322

Verify_EDDSA_T

oken
1 1 2 0.49 5.1 2.14 3.19 430

Fig 2: Application interface Jmeter

https://doi.org/10.33395/sinkron.v8i4.12819

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 7, Number 4, October 2023

DOI : https://doi.org/10.33395/sinkron.v8i4.12819

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*Moehammad Ramadhoni

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 2332

Create_ECDSA_T

oken
19 8 61 6.98 5.09 3.33 3.23 668.7

Verify_ECDSA_T

oken
23 19 31 2.72 5.11 2.15 4.92 430

Create_SNARK_T

oken
1718 1243 6538 952.74 0.04 0.03 0.03 785

Verify_SNARK_T

oken
69 53 181 22.42 0.02 0.01 0.03 430

Create_SNARK_5

12_Token
12387 10111 24405 2910.76 0.02 0.02 0.02 1041

Verify_SNARK_5

12_Token
132 94 548 83.54 0.02 0.01 0.03 430

 The table above describes the time allocation, throughput, and data sent for each function that is

executed in parallel. From the table above, the time difference between functions is greatest when

generating tokens in the ZK-SNARK process. This happen because the process when creating tokens

on ZK-SNARK is a high-computation process. After all, it is hoped that this computation can reduce

verification time. As can be seen in the table, even though the token creation process takes an average

of 12 seconds, verification only takes an average of around 132ms.

 It can also be seen in the table that the process of creating and verifying signatures in ECC has a low

time. The difference is felt in the creation and verification of 512 bits signatures, RSA has token

generation up to 583ms, while ECDSA only 61ms. However, the RSA process has a faster verification

time than the ECDSA process.

 The process in the table illustrates that the most efficient signature generation is using HMAC with

a maximum of 2 ms for 256 bits and 5 ms for 512 bits. This is understandable because of all signature

processes, only HMAC uses a symmetric key so that the creation and verification techniques are quite

easy, namely by comparing the received signature with the signature reproduced by the server.

DISCUSSIONS

From the load test results, we can see that HMAC is the most efficient signature that can be used as

an authentication process between third parties and API providers in SNAP. However, HMAC uses a

symmetric key, which means that the same key is used between the message sender and the message

recipient. This can happen by the way the sender of the message has informed the recipient of the

message the key used or the sender of the message while sending the key to the recipient of the message.

This can result in the key being known by a third party and a third party being able to decrypt the

data sent, or a third party being able to encrypt it and act as if it were the sender of the message. In

addition, there is a greater possibility of guessing keys compared to using asymmetric keys (Lenstra,

2001). That is why HMAC is more widely used on big data because the creation and verification process

is fast, but the data used is not critical.

For asymmetric keys, the most efficient use is to use EDDSA and ECDSA. RSA has a fairly good

verification process time even when using a 256 bits security level. However, the signature generation

time is quite high because it uses a very long key length compared to ECC. In SNAP, signature

generation is still used using RSA because RSA is more familiar in Indonesia than ECC.

On the other hand, ZK-SNARK has quite poor performance when it comes to the proof creation

process compared to other schemes, reaching 2 seconds for 128 bits security and 20 seconds for 256 bits

https://doi.org/10.33395/sinkron.v8i4.12819

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 7, Number 4, October 2023

DOI : https://doi.org/10.33395/sinkron.v8i4.12819

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*Moehammad Ramadhoni

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 2333

security. However, making proof using ZK-SNARK is the safest process at the moment for non-

interactive processes because the prover doesn't need to send how to make the proof and the verifier also

doesn't need to know how the proof was made but can still find out whether the data sent is correct. No.

This can make it difficult for third parties to dismantle the contents of the signature. Therefore, ZK-

SNARK is used in web3 applications, where proofing can be done outside the network and the data sent

is very private and no one should know, including the verifier.

CONCLUSION

From the research results above, we recommend that SNAP use the ECC cryptographic algorithm,

namely EDDSA or ECDSA because it is faster and only requires shorter keys with the same level of

security as RSA. Also SNAP should consider using the ECC algorithm as a cryptographic function to

save data in the financial industry in the future since the data is really important and should be having

some additional security.

REFERENCES

Aranha, D. F., Housni, Y. E., & Guillevic, A. (2022). A survey of elliptic curves for proof systems.

Cryptology ePrint Archive, Paper 2022/586. https://eprint.iacr.org/2022/586

Bafandehkar, M., Yasin, S. M., Mahmod, R., & Hanapi, Z. M. (2013). Comparison of ECC and RSA

algorithm in resource constrained devices. https://doi.org/10.1109/icitcs.2013.6717816.

Bank of Indonesia (n.d) Pedoman Tata Kelola SNAP. Retrieved May 01, 2023, from

https://bi.go.id/id/layanan/Standar/SNAP/Documents/SNAP_Pedoman_Tata_Kelola.pdf

Bank of Indonesia (n.d) Standar Data Spesifikasi Teknis SNAP. Retrieved May 01, 2023, from

https://apidevportal.bi.go.id/snap/docs/standar-data-spesifikasi-teknis

Bank of Indonesia (n.d) Standar Teknis Keamanan SNAP. Retrieved May 01, 2023, from

https://apidevportal.bi.go.id/snap/docs/standar-teknis-keamanan

Bin Uzayr, S. (2022a). Mastering golang: A beginner’s guide (1st ed.). CRC Press.

https://doi.org/10.1201/9781003310457

Bin Uzayr, S. (2022b). Golang: The ultimate guide (1st ed.). CRC Press.

https://doi.org/10.1201/9781003309055

Buterik, Vitalik. (2021) An approximate introduction to how zk-SNARKs are possible. Retrieved May

06, 2023, from https://vitalik.ca/general/2021/01/26/snarks.html

Dymora, P., & Paszkiewicz, A. (2020). Performance analysis of selected programming languages in the

context of supporting decision-making processes for industry 4.0. Applied Sciences (Switzerland),

10(23), 1–17. https://doi.org/10.3390/app10238521

Effendy, F., Taufik, & Adhilaksono, B. (2019). Performance Comparison of Web Backend and

Database: A Case Study of Node.JS, Golang and MySQL, Mongo DB. Recent Advances in

Computer Science and Communications, 14(6), 1955–1961.

https://doi.org/10.2174/2666255813666191219104133

El Housni, Y., & Guillevic, A. (2022). Families of snark-friendly 2-chains of elliptic curves. In O.

Dunkelman & S. Dziembowski (Eds.), Advances in Cryptology – EUROCRYPT 2022 (Vol. 13276,

pp. 367–396). Springer International Publishing. https://doi.org/10.1007/978-3-031-07085-3_13

Ethereum.Org .(n.d). Zero-knowledge proofs. Retrieved May 06, 2023, from https://ethereum.org

Gautam Botrel, Thomas Piellard, Youssef El Housni, Ivo Kubjas and Arya Tabaie. Gnark. 2023.

Retrieved from https://github.com/ConsenSys/gnark

Gong, Y., Jin, Y., Li, Y., Liu, Z., & Zhu, Z. (2022). Analysis and comparison of the main zero-

knowledge proof scheme. In Proceedings - 2022 International Conference on Big Data,

Information and Computer Network, BDICN 2022 (pp. 366–372). Institute of Electrical and

Electronics Engineers Inc. https://doi.org/10.1109/BDICN55575.2022.00074

Groth, J. (2016). On the size of pairing-based non-interactive arguments. In M. Fischlin & J.-S. Coron

(Eds.), Advances in Cryptology – EUROCRYPT 2016 (Vol. 9666, pp. 305–326). Springer Berlin

Heidelberg. https://doi.org/10.1007/978-3-662-49896-5_11

https://doi.org/10.33395/sinkron.v8i4.12819
https://doi.org/10.1109/icitcs.2013.6717816
https://bi.go.id/id/layanan/Standar/SNAP/Documents/SNAP_Pedoman_Tata_Kelola.pdf
https://apidevportal.bi.go.id/snap/docs/standar-data-spesifikasi-teknis
https://apidevportal.bi.go.id/snap/docs/standar-teknis-keamanan
https://doi.org/10.1201/9781003309055
https://vitalik.ca/general/2021/01/26/snarks.html
https://doi.org/10.3390/app10238521
https://doi.org/10.2174/2666255813666191219104133
https://ethereum.org/
https://doi.org/10.1109/BDICN55575.2022.00074

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 7, Number 4, October 2023

DOI : https://doi.org/10.33395/sinkron.v8i4.12819

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*Moehammad Ramadhoni

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 2334

Harjito, B., Tyas, H. N., Suryani, E., & Wardani, D. W. (2022). Comparative analysis of rsa and ntru

algorithms and implementation in the cloud. International Journal of Advanced Computer Science

and Applications (IJACSA), 13(3). https://doi.org/10.14569/IJACSA.2022.0130321

Harjoseputro, Y., Albertus Ari Kristanto, & Joseph Eric Samodra. (2020). Golang and NSG

Implementation in REST API Based Third-Party Sandbox System. Jurnal RESTI (Rekayasa Sistem

Dan Teknologi Informasi), 4(4), 745–750. https://doi.org/10.29207/resti.v4i4.2218

Housni, Y. E., & Guillevic, A. (2021). Families of SNARK-friendly 2-chains of elliptic curves.

Cryptology ePrint Archive, Paper 2021/1359. https://doi.org/10.1007/978-3-031-07085-3_13
Husufa, N., & Prihandi, I. (2022). Optimizing JMeter on performance testing using the bulk data method.

Journal of Information Systems and Informatics, 4(2), 205–215.
https://doi.org/10.51519/journalisi.v4i2.244

K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch. PKCS #1: RSA Cryptography Specifications Version

2.2. RFC 8017, 2016. https://datatracker.ietf.org/doc/html/rfc8017.

Konkin, A., & Zapechnikov, S. (2023). Zero knowledge proof and ZK-SNARK for private blockchains.

Journal of Computer Virology and Hacking Techniques. https://doi.org/10.1007/s11416-023-

00466-1

J, G., & Koppu, S. (2022). An empirical study to demonstrate that EdDSA can be used as a performance

improvement alternative to ECDSA in Blockchain and IoT. Informatica, 46(2).

https://doi.org/10.31449/inf.v46i2.3807

J, R., N, E. E., & Asokan, N. (2022). Implementation and performance analysis of elliptic curve

cryptography using an efficient multiplier. JOURNAL OF SEMICONDUCTOR TECHNOLOGY

AND SCIENCE, 22(2), 53–60. https://doi.org/10.5573/JSTS.2022.22.2.53

LabStack.(n.d). Echo. 2021. Retrieved from https://github.com/labstack/echo.

Lenstra, A. K., & Verheul, E. R. (2001). Selecting Cryptographic Key Sizes. Journal of Cryptology,

14(4), 255–293. doi:10.1007/s00145-001-0009-4

Li, W. H., Zhang, Z. Y., Zhou, Z. B., & Deng, Y. (2022, July 1). An Overview on Succinct Non-

interactive Zero-knowledge Proofs. Journal of Cryptologic Research. Chinese Association for

Cryptologic Research. https://doi.org/10.13868/j.cnki.jcr.000525

National Institute of Standards and Technology. Federal Information Processing Standards FIPS PUB

186-4: Digital Signature Standard (DSS), 2013.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

National Institute of Standards and Technology. Federal Information Processing Standards FIPS PUB

180-4: Secure Hash Standard, 2015. https://nvlpubs.nist.gov/nistpubs/ FIPS/NIST.FIPS.180-4.pdf.

Ogunleye, G. O., & Akinsanya, S. E. (2022). Elliptic curve cryptography performance evaluation for

securing multi-factor systems in a cloud computing environment. Iraqi Journal of Science, 3212–

3224. https://doi.org/10.24996/ijs.2022.63.7.40

Setty, S. (2020). Spartan: Efficient and general-purpose zksnarks without trusted setup. In D. Micciancio

& T. Ristenpart (Eds.), Advances in Cryptology – CRYPTO 2020 (Vol. 12172, pp. 704–737).

Springer International Publishing. https://doi.org/10.1007/978-3-030-56877-1_25

Singh, S. R., Khan, A. K., & Singh, S. R. (2016). Performance evaluation of rsa and elliptic curve

cryptography. 2016 2nd International Conference on Contemporary Computing and Informatics

(IC3I), 302–306. https://doi.org/10.1109/IC3I.2016.7917979

Tyagi, S., & Kathuria, M. (2022). Role of Zero-Knowledge Proof in Blockchain Security. In 2022

International Conference on Machine Learning, Big Data, Cloud and Parallel Computing, COM-

IT-CON 2022 (pp. 738–743). Institute of Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/COM-IT-CON54601.2022.9850714

https://doi.org/10.33395/sinkron.v8i4.12819
https://datatracker.ietf.org/doc/html/rfc8017
https://doi.org/10.13868/j.cnki.jcr.000525
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 7, Number 4, October 2023

DOI : https://doi.org/10.33395/sinkron.v8i4.12819

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*Moehammad Ramadhoni

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 2335

Ullah, S., Zheng, J., Din, N., Hussain, M. T., Ullah, F., & Yousaf, M. (2023). Elliptic Curve

Cryptography; Applications, challenges, recent advances, and future trends: A comprehensive

survey. Computer Science Review, 47, 100530. https://doi.org/10.1016/j.cosrev.2022.100530

Yousif, S. F. (2023). Performance comparison between rsa and el-gamal algorithms for speech data

encryption and decryption. Diyala Journal of Engineering Sciences, 123–137.

https://doi.org/10.24237/djes.2023.16112

Zahan, A., Hossain, Md. S., Rahman, Z., & Shezan, Sk. A. (2020). Smart home IoT use case with elliptic

curve based digital signature: An evaluation on security and performance analysis. International

Journal of Advanced Technology and Engineering Exploration, 7(62), 11–19.

https://doi.org/10.19101/IJATEE.2019.650070

https://doi.org/10.33395/sinkron.v8i4.12819

