S . 'k Sinkron : Jurnal dan Penelitian Teknik Informatika
l'ﬂ Ton Volume 7, Number 4, October 2023 e-ISSN : 2541-2019
e DOI : https://doi.org/10.33395/sinkron.v8i4.12819 p-1SSN : 2541-044X

Performance Comparison between Signature
Cryptography: A Case Study on SNAP
Indonesia

Moehammad RamadhoniV*, Handri Santoso?
LAUniversitas Pradita, Indonesia,
Dmoehammad.ramadhoni@student.pradita.ac.id ?handri.santoso@pradita.ac.id’

Submitted : Jul 31, 2023 | Accepted : Aug 17, 2023 | Published : Oct 1, 2023

Abstract: SNAP (Standar Nasional OPEN APl Pembayaran) was submitted
by several sub-working groups formed jointly by ASPI and the Bank of
Indonesia for encouraging digital transformation in the banking industry. In
the document Pedoman Tata Kelola (Bank of Indonesia, n.d.), there is the
use cryptographic algorithms that are used as validation for third parties to
use the Open API. The algorithms used in the document are HMAC and
RSA. However, there are other algorithms that can be used as a form of
validation, such as ECC and ZK-SNARK. ECC uses an elliptic curve as a
standard cryptography calculation which can use shorter keys than RSA. On
the other hand, ZK-SNARK uses a pairing-based elliptic curve which makes
verification calculations simpler. The method used as authentication in
SNAP is the third party will send the signature in the API header along with
the sent API payload. The signature describes the body payload, the endpoint
URL that was called by the third party, and the time when the API call was
made, so the signature will change all the time. In this research, the
performance of the four cryptographic algorithms is compared based on
SNAP method. The performance we compare is overall speed of process
when creating the signature and verifying it. The result is that HMAC is the
most efficient algorithm, but for financial data, it is better to use ECC which
uses asymmetric keys and is faster than RSA contained in the SNAP
document, especially when 256 bits security level that ECC could be 10
times faster then RSA.

Keywords: cryptographic, ECC, HMAC, performance, RSA, SNAP, ZK-
SNARK,

INTRODUCTION
On 16 August 2021, Bank Indonesia verified a document regarding the use of an Open API for

payments in Indonesia named SNAP (Standar Nasional OPEN API Pembayaran). This document was
initiated by many parties who are members of a sub-working group called ASPI (Asosiasi Sistem
Pembayaran Indonesia). The document already contains a chapter on standard encryption components
that are used as part of verifying every API call made by a third party.

This chapter explains the procedures for using signatures for the verification process, such as using
public and private keys, using encoding authentication in each header, and using signatures in headers.
The use of data encryption is intended as an additional security for API calls so that third parties cannot
call any API with the same signature when calling other APIs.

*Moehammad Ramadhoni

This is an Creative Commons License This work is licensed under a Creative
BY NG Commons Attribution-NonCommercial 4.0 International License. 2327

https://doi.org/10.33395/sinkron.v8i4.12819
mailto:email@email.com
mailto:email@email.com

S . 'k Sinkron : Jurnal dan Penelitian Teknik Informatika
l'ﬂ Ton Volume 7, Number 4, October 2023 e-ISSN : 2541-2019
e DOI : https://doi.org/10.33395/sinkron.v8i4.12819 p-1SSN : 2541-044X

There are two uses of signatures in SNAP documentation, namely symmetric and asymmetric
signatures. Symmetric signature uses the HMAC-SHAL12 algorithm. On the other hand, an asymmetric
signature uses the SHA256-with-RSA algorithm. Both of these signatures have an adequate good level
of security and are difficult to be attacked by the man in the middle.

The difference between the two signatures is that RSA requires a private and public key that is
generated at the beginning as a trusted key that is stored by both parties, while HMAC does not require
a trusted key, because the process of forming a signature only requires a secret key that is known by
both parties. The SHA256-with-RSA technigue also requires a secret key for the SHA process in the
algorithm.

Other authentication processes are ECC and ZK-SNARK. Both use an elliptic curve which has a high
level of security with a shorter key length. With a shorter key length, the verification process becomes
faster and more efficient. This elliptic curve algorithm is used in web3 applications and blockchain
applications which are widely used today.

In this research, we will compare the signature algorithm processes on SNAP, namely HMAC-

SHA512 and SHA256-with-RSA with ZK-SNARK. ZK-SNARK is an authentication algorithm using
pair elliptic curve cryptography which can reduce the proof for verification but still with a high level of
security. The results of this comparison will lead to increased performance but still with the same level
of security.

LITERATURE REVIEW

RSA has been deemed as a secure and trustworthy algorithm among all asymmetric algorithms which
have been proposed up to now. In fact, the RSA algorithm is a compatible asymmetric cipher, since it
applies a key with various length. In this algorithm security can be assured at the expense of speed. The
typical length of RSA keys are 512- 2048 bits. Rivest et al invented RSA algorithm in 1978 (Rivest,
1978).

Considerable cryptanalysis has approved RSA as a reliable algorithm over the years. It demonstrates
that this algorithm has remarkable amount of reliability. Difficulty of factoring large numbers acts as a
core component of RSA's security. The efficiency of RSA would be ruined if it was possible to find a
simple method for factoring these large numbers.

MAC algorithms are keyed hash functions that allow to verify whether a transmitted message has
been altered. In order to use a MAC algorithm in computer networks, a secret key should be first
distributed to the authorized entities. HMAC, which was designed by Bellare, Canetti and Krawczyk, is
a standardized hash-based MAC algorithm that is widely used as a MAC algorithm and as a
pseudorandom function generator (Bellare, 1996). HMAC takes a message of an arbitrary bit-length and
hashes it with one secret key.

HMAC is proved to be a pseudorandom function under the assumption that the compression function
of the underlying hash function is a pseudorandom function (Bellare, 2006) (note that the security proof
of pseudorandomness provides the MAC security (Bellare, 2000)). However, this does not guarantee
the security of HMAC if it is instantiated with a specific cryptographic hash function such as MD5 or
SHA-1.

The utilization of elliptic curves in cryptography has been proposed for the first time by Koblitz and
Victor Miller individually in mid 1980s (Koblitz, 1987). ECC is known as a sort of PKC which is built
upon algebraic structure of elliptic curve over finite fields. ECC use computation which known as
Elliptic Curve Discrete Logarithm Problem (ECDLP). This algorithm can only be resolved in
exponential time causing ECC became a promising branch of public-key cryptography which offers

*Moehammad Ramadhoni

This is an Creative Commons License This work is licensed under a Creative
BY NG Commons Attribution-NonCommercial 4.0 International License. 2328

https://doi.org/10.33395/sinkron.v8i4.12819

S . 'k Sinkron : Jurnal dan Penelitian Teknik Informatika
l'ﬂ Ton Volume 7, Number 4, October 2023 e-ISSN : 2541-2019
e DOI : https://doi.org/10.33395/sinkron.v8i4.12819 p-1SSN : 2541-044X

similar security to other “traditional” DLP- based schemes, with smaller key sizes and memory
requirements, e.g., 160 bits instead of 1024 bits.

The National Institute of Standards and Technology (NIST) is a federal non-standards agency within
the U.S. Department of Commerce Administration of Technology. NIST provides specifications for
ECC that are considered safe for application in cryptography. NIST recommends elliptic curves in
binary-fields with values 2163 2233 2248 2409 and 2571 (Hankerson, 2000).

The basic concept of zero-knowledge proof is that the prover exchanges messages with the verifier,
where the prover tries to convince the verifier that the prover knows something without having to tell
the verifier something. Unlike interactive proofs, no-interactive proofs only require one interaction
between participants. Prover sends confidential information to a special algorithm that can calculate
zero-knowledge proofs. The proof is then sent to the verifier, which will check the confidential
information using another algorithm. Non-interactive zero-knowledge proof reduces communication
between the prover and verifier, making ZKP more efficient.

Groth (Groth, 2016) builds on NIZK's argument to satisfy an arithmetic circuit where the proof
consists of only 3 groups of elements. Due to their small size, proofs are also easier to verify. The verifier
only needs to calculate an exponential number proportional to the statement size and check the equation
for the single pairing product, which has only 3 pairs

METHOD

Based on the SNAP document from Bank Indonesia, Open API is used by third parties to access
services from banks or similar parties. To be able to access these services, an authentication process is
used using the header in the API call. The header contains signatures that are only expected to be known
by third parties and APl owners so that it is expected to minimize the possibility of unauthenticated
parties being able to access and enjoy the service.

In this section, we will compare the performance of the two algorithms used in SNAP, namely RSA
and HMAC, with the cryptographic algorithms that are currently widely used, namely ECC and ZK-
SNARK. All four algorithms will be performed at the middleware level, it is the schema where
implement before the request process is performed. The process and flow for creating a signature follow
the directions in the SNAP documen t so that system development also follows the document.

USER THIRD PARTY SMNAP API BANK

User LISBIThIrjd party call SNAP AP Chec.k third party
application signature

Process the request ——— Financial process

Send back response to

User see response third party

Receive response

{ Send back response

Fig 1: SNAP API process

*Moehammad Ramadhoni

This is an Creative Commons License This work is licensed under a Creative
BY NG Commons Attribution-NonCommercial 4.0 International License. 2329

https://doi.org/10.33395/sinkron.v8i4.12819

S . 'k Sinkron : Jurnal dan Penelitian Teknik Informatika
ln Ton Volume 7, Number 4, October 2023 e-ISSN : 2541-2019
e DOI : https://doi.org/10.33395/sinkron.v8i4.12819 p-1SSN : 2541-044X

To develop the system, the Golang programming language was used. For making the API, the echo
library is used (Labstack, 2021) which has been used by many developers as the main library for API
development in the Golang language. To develop the RSA, HMAC, and ECC algorithms, the crypto
library (default library in Golang) is used, while ZK-SNARK uses the gnark library (Gautam, n.d.,
2023).

This research uses the same security level for each cryptographic algorithm used so that a cost ratio
is obtained for each time of creation and signature verification for each algorithm. Below is the algorithm
used for each cryptography.

Table 1: Key size ratio between HMAC, RSA, ECC, and ZK-SNARK

Key Size Security Level
HMAC RSA ECC ZK-SNARK o Key Size Ratio
256* 3072 256 256 128 1:12:1:1
512* 15360 521 388** 256 1.3:40:1.3:1

*key and message must satisfied standard size so security level could be achieve

**implementation of pairing-ECC nowday max uses curve BW6-761 that could create 388 bits key with
security level 192 bits.[14]

HMAC and ECC have the same key size ratio, whereas the higher the desired security level, the higher
the key size required by RSA to achieve that security. The largest current implementation of ZK-
SNARK uses a key size of 388 hits. The size of the key will affect the output length of the signature.
Based on Table 1, at a security level of 128 bits, RSA will have an output signature 12 times longer than
HMAC and ECC, while at a security bit of 256, RSA will produce an output signature length 30 times
longer than HMAC and ECC.

In the HMAC algorithm, it takes a key length equal to the number of algorithms used so that the
expected security level can be achieved. Otherwise, the security level will only be the same as the bit
length of the key, for example in the HMAC-SHA256 algorithm, the key length used must be 256 bits
so that the security level can be maintained with a minimum message half of 256 bits.

The ZK-SNARK algorithm requires a circuit constraint before using the ZK-SNARK algorithm. The
circuit is needed to verify whether the prover knows the circuit and can perform calculations based on
the agreed circuit. In this research, each security level ZK-SNARK will use 2 different circuits, the first
EDDSA with 256 bits and the second with 512 bits.

RESULT
Load tests are used to obtain the performance of an application by calling the endpoint of the
application many times, serially or parallel (concurrent). In this research, a load test is carried out using
the Jmeter application. To get good results, we must isolate the machine used for the load test and each
load test must have the same environment so that stable results will be obtained for each function
measured.

*Moehammad Ramadhoni

This is an Creative Commons License This work is licensed under a Creative
BY NG Commons Attribution-NonCommercial 4.0 International License. 2330

https://doi.org/10.33395/sinkron.v8i4.12819

S . 'k Sinkron : Jurnal dan Penelitian Teknik Informatika
ln TO'ﬂ Volume 7, Number 4, October 2023 e-ISSN : 2541-2019
s epmmmarenanes— DO ;- https://doi.org/10.33395/sinkron.v8i4.12819 p-ISSN : 2541-044X

RSA-HMAC-ECC-ZKSNARK TEST.jmx (/home/ramadhoni/jmeter test/RSA-HMAC-ECC-ZKSNARK TEST.jmx) - Apache JMeter (5.5) - o x

Fig 2: Application interface Jmeter

Table 2: Load test result

Throughp Received

Label A\(/:: :)ge z\r/lnlsr; ?:Ini))(Std. Dev. ut KB/sec KSBe/r;(teC I'BA\Vt%S
(KB/sec) Y
Cfeate_t'e'\:AC—To 1 1 2 0.49 5.1 1.38 322 277
Ve”fy-t'e'z'AC—To 1 1 2 0.37 5.1 2.14 296 430
Create. HMAC 51 0 0 5 0.78 51 1.6 3.28 322
2_Token
ViR IRl s Bl 1 0 2 0.45 5.1 2.14 32 430
2_Token
Create_RnSA_Toke 8 6 16 248 5.1 3.72 3.21 746
Verlfy_RnSA_TOke 1 0 2 0.36 5.1 2.14 529 430
Creatt RSASIZ. 477 303 583 3360 491 1348 314 2813
Token
Verify RSA 512 4 3 9 1.17 =l 214 15.51 430
Token
Create EDDSA T 1 1 6 0.7 5.1 1.6 3.24 322
oken
Ver'fy_OiEnDSA—T 1 1 2 0.49 5.1 2.14 319 430

*Moehammad Ramadhoni

This is an Creative Commons License This work is licensed under a Creative
BY NG Commons Attribution-NonCommercial 4.0 International License. 2331

https://doi.org/10.33395/sinkron.v8i4.12819

S . 'k Sinkron : Jurnal dan Penelitian Teknik Informatika
l'ﬂ Ton Volume 7, Number 4, October 2023 e-ISSN : 2541-2019
e DOI : https://doi.org/10.33395/sinkron.v8i4.12819 p-1SSN : 2541-044X

Create ECDSA_ T

19 8 61 698 509 333 323 668.7
oken

Verify ECDSA T 23 19 31 279 kil 215 4.92 430
oken

ClOe SNARKT 1mg 123 6538 95274 004 003 003 785

VI SN T 69 53 181 2242 002 001 003 430
oken

Create SNARK_S 12387 10111 24405 291076 002 002 002 1041
12_Token

Verify SNARKLS 137 o4 548 8354 0.02 00l 003 430
12_Token

The table above describes the time allocation, throughput, and data sent for each function that is
executed in parallel. From the table above, the time difference between functions is greatest when
generating tokens in the ZK-SNARK process. This happen because the process when creating tokens
on ZK-SNARK is a high-computation process. After all, it is hoped that this computation can reduce
verification time. As can be seen in the table, even though the token creation process takes an average
of 12 seconds, verification only takes an average of around 132ms.

It can also be seen in the table that the process of creating and verifying signatures in ECC has a low
time. The difference is felt in the creation and verification of 512 bits signatures, RSA has token
generation up to 583ms, while ECDSA only 61ms. However, the RSA process has a faster verification
time than the ECDSA process.

The process in the table illustrates that the most efficient signature generation is using HMAC with
a maximum of 2 ms for 256 bits and 5 ms for 512 bits. This is understandable because of all signature
processes, only HMAC uses a symmetric key so that the creation and verification techniques are quite
easy, namely by comparing the received signature with the signature reproduced by the server.

DISCUSSIONS

From the load test results, we can see that HMAC is the most efficient signature that can be used as
an authentication process between third parties and API providers in SNAP. However, HMAC uses a
symmetric key, which means that the same key is used between the message sender and the message
recipient. This can happen by the way the sender of the message has informed the recipient of the
message the key used or the sender of the message while sending the key to the recipient of the message.

This can result in the key being known by a third party and a third party being able to decrypt the
data sent, or a third party being able to encrypt it and act as if it were the sender of the message. In
addition, there is a greater possibility of guessing keys compared to using asymmetric keys (Lenstra,
2001). That is why HMAC is more widely used on big data because the creation and verification process
is fast, but the data used is not critical.

For asymmetric keys, the most efficient use is to use EDDSA and ECDSA. RSA has a fairly good
verification process time even when using a 256 bits security level. However, the signature generation
time is quite high because it uses a very long key length compared to ECC. In SNAP, signature
generation is still used using RSA because RSA is more familiar in Indonesia than ECC.

On the other hand, ZK-SNARK has quite poor performance when it comes to the proof creation
process compared to other schemes, reaching 2 seconds for 128 bits security and 20 seconds for 256 bits

*Moehammad Ramadhoni

This is an Creative Commons License This work is licensed under a Creative
BY NG Commons Attribution-NonCommercial 4.0 International License. 2332

https://doi.org/10.33395/sinkron.v8i4.12819

S . 'k Sinkron : Jurnal dan Penelitian Teknik Informatika
l'ﬂ Ton Volume 7, Number 4, October 2023 e-ISSN : 2541-2019
R DOI : https://doi.org/10.33395/sinkron.v8i4.12819 p-1SSN : 2541-044X

security. However, making proof using ZK-SNARK is the safest process at the moment for non-
interactive processes because the prover doesn't need to send how to make the proof and the verifier also
doesn't need to know how the proof was made but can still find out whether the data sent is correct. No.
This can make it difficult for third parties to dismantle the contents of the signature. Therefore, ZK-
SNARK is used in web3 applications, where proofing can be done outside the network and the data sent
is very private and no one should know, including the verifier.

CONCLUSION
From the research results above, we recommend that SNAP use the ECC cryptographic algorithm,
namely EDDSA or ECDSA because it is faster and only requires shorter keys with the same level of
security as RSA. Also SNAP should consider using the ECC algorithm as a cryptographic function to
save data in the financial industry in the future since the data is really important and should be having
some additional security.

REFERENCES

Aranha, D. F., Housni, Y. E., & Guillevic, A. (2022). A survey of elliptic curves for proof systems.
Cryptology ePrint Archive, Paper 2022/586. https://eprint.iacr.org/2022/586

Bafandehkar, M., Yasin, S. M., Mahmod, R., & Hanapi, Z. M. (2013). Comparison of ECC and RSA
algorithm in resource constrained devices. https://doi.org/10.1109/icitcs.2013.6717816.

Bank of Indonesia (n.d) Pedoman Tata Kelola SNAP. Retrieved May 01, 2023, from
https://bi.go.id/id/layanan/Standar/SNAP/Documents/SNAP_Pedoman_Tata_Kelola.pdf

Bank of Indonesia (n.d) Standar Data Spesifikasi Teknis SNAP. Retrieved May 01, 2023, from
https://apidevportal.bi.go.id/snap/docs/standar-data-spesifikasi-teknis

Bank of Indonesia (n.d) Standar Teknis Keamanan SNAP. Retrieved May 01, 2023, from
https://apidevportal.bi.go.id/snap/docs/standar-teknis-keamanan

Bin Uzayr, S. (2022a). Mastering golang: A beginner’s guide (1st ed.). CRC Press.
https://doi.org/10.1201/9781003310457

Bin Uzayr, S. (2022b). Golang: The ultimate guide (1st ed). CRC Press.
https://doi.org/10.1201/9781003309055

Buterik, Vitalik. (2021) An approximate introduction to how zk-SNARKSs are possible. Retrieved May
06, 2023, from https://vitalik.ca/general/2021/01/26/snharks.html

Dymora, P., & Paszkiewicz, A. (2020). Performance analysis of selected programming languages in the
context of supporting decision-making processes for industry 4.0. Applied Sciences (Switzerland),
10(23), 1-17. https://doi.org/10.3390/app10238521

Effendy, F., Taufik, & Adhilaksono, B. (2019). Performance Comparison of Web Backend and
Database: A Case Study of Node.JS, Golang and MySQL, Mongo DB. Recent Advances in
Computer Science and Communications, 14(6), 1955-1961.
https://doi.org/10.2174/2666255813666191219104133

El Housni, Y., & Guillevic, A. (2022). Families of snark-friendly 2-chains of elliptic curves. In O.
Dunkelman & S. Dziembowski (Eds.), Advances in Cryptology — EUROCRYPT 2022 (Vol. 13276,
pp. 367—-396). Springer International Publishing. https://doi.org/10.1007/978-3-031-07085-3 13

Ethereum.Org .(n.d). Zero-knowledge proofs. Retrieved May 06, 2023, from https://ethereum.org

Gautam Botrel, Thomas Piellard, Youssef EI Housni, Ivo Kubjas and Arya Tabaie. Gnark. 2023.
Retrieved from https://github.com/ConsenSys/gnark

Gong, Y., Jin, Y., Li, Y., Liu, Z., & Zhu, Z. (2022). Analysis and comparison of the main zero-
knowledge proof scheme. In Proceedings - 2022 International Conference on Big Data,
Information and Computer Network, BDICN 2022 (pp. 366-372). Institute of Electrical and
Electronics Engineers Inc. https://doi.org/10.1109/BDICN55575.2022.00074

Groth, J. (2016). On the size of pairing-based non-interactive arguments. In M. Fischlin & J.-S. Coron
(Eds.), Advances in Cryptology — EUROCRYPT 2016 (Vol. 9666, pp. 305-326). Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-662-49896-5_11

*Moehammad Ramadhoni

This is an Creative Commons License This work is licensed under a Creative
BY NG Commons Attribution-NonCommercial 4.0 International License. 2333

https://doi.org/10.33395/sinkron.v8i4.12819
https://doi.org/10.1109/icitcs.2013.6717816
https://bi.go.id/id/layanan/Standar/SNAP/Documents/SNAP_Pedoman_Tata_Kelola.pdf
https://apidevportal.bi.go.id/snap/docs/standar-data-spesifikasi-teknis
https://apidevportal.bi.go.id/snap/docs/standar-teknis-keamanan
https://doi.org/10.1201/9781003309055
https://vitalik.ca/general/2021/01/26/snarks.html
https://doi.org/10.3390/app10238521
https://doi.org/10.2174/2666255813666191219104133
https://ethereum.org/
https://doi.org/10.1109/BDICN55575.2022.00074

S . 'k Sinkron : Jurnal dan Penelitian Teknik Informatika
l'ﬂ Ton Volume 7, Number 4, October 2023 e-ISSN : 2541-2019
e DOI : https://doi.org/10.33395/sinkron.v8i4.12819 p-1SSN : 2541-044X

Harjito, B., Tyas, H. N., Suryani, E., & Wardani, D. W. (2022). Comparative analysis of rsa and ntru
algorithms and implementation in the cloud. International Journal of Advanced Computer Science
and Applications (IJACSA), 13(3). https://doi.org/10.14569/1JACSA.2022.0130321

Harjoseputro, Y., Albertus Ari Kristanto, & Joseph Eric Samodra. (2020). Golang and NSG
Implementation in REST API Based Third-Party Sandbox System. Jurnal RESTI (Rekayasa Sistem
Dan Teknologi Informasi), 4(4), 745-750. https://doi.org/10.29207/resti.v4i4.2218

Housni, Y. E., & Guillevic, A. (2021). Families of SNARK-friendly 2-chains of elliptic curves.
Cryptology ePrint Archive, Paper 2021/1359. https://doi.org/10.1007/978-3-031-07085-3_13

Husufa, N., & Prihandi, 1. (2022). Optimizing JMeter on performance testing using the bulk data method.
Journal of Information Systems and Informatics, 4(2), 205-215.
https://doi.org/10.51519/journalisi.v4i2.244

K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch. PKCS #1: RSA Cryptography Specifications Version
2.2. RFC 8017, 2016. https://datatracker.ietf.org/doc/html/rfc8017.

Konkin, A., & Zapechnikov, S. (2023). Zero knowledge proof and ZK-SNARK for private blockchains.
Journal of Computer Virology and Hacking Techniques. https://doi.org/10.1007/s11416-023-
00466-1

J, G., & Koppu, S. (2022). An empirical study to demonstrate that EHDSA can be used as a performance
improvement alternative to ECDSA in Blockchain and loT. Informatica, 46(2).
https://doi.org/10.31449/inf.v46i2.3807

J, R, N, E. E.,, & Asokan, N. (2022). Implementation and performance analysis of elliptic curve
cryptography using an efficient multiplier. JOURNAL OF SEMICONDUCTOR TECHNOLOGY
AND SCIENCE, 22(2), 53-60. https://doi.org/10.5573/JSTS.2022.22.2.53

LabStack.(n.d). Echo. 2021. Retrieved from https://github.com/labstack/echo.

Lenstra, A. K., & Verheul, E. R. (2001). Selecting Cryptographic Key Sizes. Journal of Cryptology,
14(4), 255-293. doi:10.1007/s00145-001-0009-4

Li, W. H., Zhang, Z. Y., Zhou, Z. B., & Deng, Y. (2022, July 1). An Overview on Succinct Non-
interactive Zero-knowledge Proofs. Journal of Cryptologic Research. Chinese Association for
Cryptologic Research. https://doi.org/10.13868/j.cnki.jcr.000525

National Institute of Standards and Technology. Federal Information Processing Standards FIPS PUB
186-4: Digital Signature Standard (DSS), 2013.
https://nvipubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

National Institute of Standards and Technology. Federal Information Processing Standards FIPS PUB

180-4: Secure Hash Standard, 2015. https://nvipubs.nist.gov/nistpubs/ FIPS/NIST.FIPS.180-4.pdf.

Ogunleye, G. O., & Akinsanya, S. E. (2022). Elliptic curve cryptography performance evaluation for
securing multi-factor systems in a cloud computing environment. Iragi Journal of Science, 3212—
3224. https://doi.org/10.24996/ijs.2022.63.7.40

Setty, S. (2020). Spartan: Efficient and general-purpose zksnarks without trusted setup. In D. Micciancio
& T. Ristenpart (Eds.), Advances in Cryptology — CRYPTO 2020 (Vol. 12172, pp. 704-737).
Springer International Publishing. https://doi.org/10.1007/978-3-030-56877-1 25

Singh, S. R., Khan, A. K., & Singh, S. R. (2016). Performance evaluation of rsa and elliptic curve
cryptography. 2016 2nd International Conference on Contemporary Computing and Informatics
(1C3l), 302-306. https://doi.org/10.1109/1C31.2016.7917979

Tyagi, S., & Kathuria, M. (2022). Role of Zero-Knowledge Proof in Blockchain Security. In 2022
International Conference on Machine Learning, Big Data, Cloud and Parallel Computing, COM-
IT-CON 2022 (pp. 738-743). Institute of Electrical and Electronics Engineers Inc.
https://doi.org/10.1109/COM-IT-CON54601.2022.9850714

*Moehammad Ramadhoni

This is an Creative Commons License This work is licensed under a Creative
BY NG Commons Attribution-NonCommercial 4.0 International License. 2334

https://doi.org/10.33395/sinkron.v8i4.12819
https://datatracker.ietf.org/doc/html/rfc8017
https://doi.org/10.13868/j.cnki.jcr.000525
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/

S . 'k Sinkron : Jurnal dan Penelitian Teknik Informatika
l'ﬂ TO'ﬂ Volume 7, Number 4, October 2023 e-ISSN : 2541-2019
R E— DOI : https://doi.org/10.33395/sinkron.v8i4.12819 p-1SSN : 2541-044X

Ullah, S., Zheng, J., Din, N., Hussain, M. T., Ullah, F., & Yousaf, M. (2023). Elliptic Curve
Cryptography; Applications, challenges, recent advances, and future trends: A comprehensive
survey. Computer Science Review, 47, 100530. https://doi.org/10.1016/j.cosrev.2022.100530

Yousif, S. F. (2023). Performance comparison between rsa and el-gamal algorithms for speech data
encryption and decryption. Diyala Journal of Engineering Sciences, 123-137.
https://doi.org/10.24237/djes.2023.16112

Zahan, A., Hossain, Md. S., Rahman, Z., & Shezan, Sk. A. (2020). Smart home 10T use case with elliptic
curve based digital signature: An evaluation on security and performance analysis. International

Journal of Advanced Technology and Engineering Exploration, 7(62), 11-19.
https://doi.org/10.19101/1JATEE.2019.650070

*Moehammad Ramadhoni

This is an Creative Commons License This work is licensed under a Creative
BY NC Commons Attribution-NonCommercial 4.0 International License.

2335

https://doi.org/10.33395/sinkron.v8i4.12819

