

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 8, Number 1, January 2024

DOI : https://doi.org/10.33395/sinkron.v9i1.13049

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 221

Imperceptible and Robust Encryption: Salsa20

Stream Cipher for Colour Image Data

Aldi Azmi Arfian1)*, Christy Atika Sari2), Eko Hari Rachmawanto3),

Folasade Olubusola Isinkaye4)
1,2,3)University of Dian Nuswantoro, Indonesia

4)Ekiti State University, Ado Ekiti, Nigeria

1)111202214439@mhs.dinus.ac.id, 2)christy.atika.sari@dsn.dinus.ac.id, 3)eko.hari@dsn.dinus.ac.id,
4)folasade.isinkaye@eksu.edu.ng

Submitted: Sep 26, 2023 | Accepted : Nov 7, 2023 | Published : Jan 1, 2024

Abstract: Data security has become crucial, especially in today's era,

therefore we need to protect our personal data to avoid unwanted incidents.

The primary objective of this research is to empirically demonstrate the

viability of our proposed methodology for encrypting color images using the

Salsa20 algorithm, renowned for its stream cipher characteristics, which

inherently afford it a swift processing speed. The encryption method we use

is to take each pixel from the original image and convert it into bytes based

on the RGB value in it, then encrypt it using a keyword that has been

converted using a hash function. In this study, we carried out several

evaluations to evaluate the performance of the encrypted and decrypted

images to test the method we propose, including histogram analysis and

compare patterns, visual image testing, and key space analysis. Through this

experiment, it has been proven that Salsa20 is effective in maintaining

confidentiality and image integrity. Histogram analysis reveals differences in

pixel distribution patterns between the original and encrypted images. Visual

testing shows that the encrypted image maintains good optical quality.

Keyspace analysis ensures the security of encryption keys. The performance

evaluation resulted in an NPCR above 99%, UACI had been reached 69.28%,

MSE was closes to 0, and the highest PSNR was around 61.89dB, this shows

that encrypted images recovered with high accuracy.

Keywords: Data Security; Stream Cipher; Salsa20; Encryption; Hash

Function;

INTRODUCTION

In the pursuit of safeguarding data confidentiality, integrity, and availability, the adoption of

cryptographic techniques has grown in significance. Cryptography plays a pivotal role in ensuring the

secure transmission and storage of data, be it over networks or physical mediums. However, it's crucial

to recognize that the landscape of information security is ever-evolving. As technological advancements

progress, so do threats and attacks. Thus, continuous research and development in the field of

cryptography are essential to create stronger, more efficient, and robust techniques and algorithms.

Through the application of robust encryption methods and the careful safeguarding of cryptographic

keys, data can be shielded from threats and unauthorized access. It's essential to acknowledge that no

security system can provide an absolute guarantee, which fuels the demand for enhanced information

confidentiality and motivates the ongoing development of new encryption techniques and algorithms

(Jawad Kubba & Hoomod, 2019).

Image encryption, specifically, is the process of securing image data to prevent unauthorized access

and comprehension. One notable algorithm used in image encryption is Salsa20, a stream cipher

https://doi.org/10.33395/sinkron.v9i1.13049
mailto:111202214439@mhs.dinus.ac.id
mailto:christy.atika.sari@dsn.dinus.ac.id
mailto:eko.hari@dsn.dinus.ac.id
mailto:folasade.isinkaye@eksu.edu.ng

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 8, Number 1, January 2024

DOI : https://doi.org/10.33395/sinkron.v9i1.13049

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 222

algorithm developed by Daniel J. Bernstein in 2005. Salsa20 offers a potent combination of security and

efficiency for safeguarding continuous streams of data bits. In image encryption using the Salsa20

algorithm, the image is transformed into a stream of bits and then encrypted using a symmetric key.

Notably, Salsa20 supports symmetric keys of up to 256 bits, providing a high level of security that can

withstand brute-force attacks. The algorithm employs merging, repetition, and bit replacement

operations to generate a random and unpredictable keystream, which is then XORed with the image bit

stream to produce encrypted data (Fernandez de Loaysa Babiano et al., 2023; Mohaisen & Mohammed,

2020; Reza et al., 2020). The decryption process mirrors this procedure, utilizing the same key to restore

the data to its original form.

Stream ciphers operate by encrypting and decrypting data bit by bit, akin to a flowing stream of

data. Their primary advantage lies in their processing speed (Reza et al., 2020). By employing a stream

cipher such as Salsa20, users can swiftly and efficiently secure their data.

The pycryptodome package is a prevalent choice in research, particularly for text encryption (Pabbi

et al., 2021; Singhal* et al., 2020). Previously, research had been carried out with a similar theme, such

as research conducted by Rasha Subhi Hameed, Bashar Ahmed Khalaf, and Ali Husein in 2020, in this

research paper an enhanced iteration of the Salsa20 stream cipher is introduced, named ESalsa20. The

primary objective is to boost the cipher's operational efficiency by incorporating two distinct chaotic

maps, specifically the 1D logistic map and the Chebyshev map. ESalsa20 is meticulously crafted to cater

to scenarios where the need for swift data encryption is as crucial as ensuring data security (Hameed et

al., 2020). Through histogram analysis with Lena images at 256*256, evaluation of the results shows

that the histogram is very randomly distributed, the MSE value is 6900, and the PSNR value is 9.74 dB.

In research conducted by Eman L. Mohaisen and Rana Saad in 2020, they also proposed an image

encryption method using the Salsa20 algorithm combined with chaotic maps, using lena images. This

research produces a randomly distributed histogram and obtains an entropy value of 7.75, NPCR value

of 97.34 %, UACI value of 32.23 %, MSE value of 8945, and PSNR 38.51 dB (Mohaisen & Mohammed,

2020).

Based on the preceding explanation, our research aimed to assess the viability and effectiveness of

employing the Salsa20 algorithm for encrypting images using pycryptodome package with our proposed

method. The Python version used in this research is 3.10.12 and the pycryptodome package version is

3.18.0.

METHOD

Data Collection

In The datasets used in this research include clegg.tif with a size of 815*880 pixels, lena.tif with a

size of 512*512 pixels, monarch.tif with a size of 768*512, peppers.tif with a size of 512*512, and

tulips. tif with a size of 768*512 pixels. The image dataset can be found at the following link

https://links.uwaterloo.ca/Repository.html. The image dataset can be seen in Fig 1.

Fig. 1 Dataset

Salsa20 Algorithm

The Salsa20 algorithm is an encryption algorithm that is included in the 256-bit stream cipher

category which was designed in 2005 (Fernandez de Loaysa Babiano et al., 2023; Mohaisen &

Mohammed, 2020; Reza et al., 2020). Apart from supporting keys with a length of 256-bit, Salsa20 also

https://doi.org/10.33395/sinkron.v9i1.13049
https://links.uwaterloo.ca/Repository.html

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 8, Number 1, January 2024

DOI : https://doi.org/10.33395/sinkron.v9i1.13049

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 223

supports keys with a length of 128-bit. When using a 128-bit key, the key will be doubled to 256-bit.

Salsa20 runs on 32-bit words. Salsa20's core functions change 256-bit keys (k0, k1, k2, k3, k4, k5, k6, k7),

64-bit counters (t0, t1), 64-bit nonce (v0, v1), and four 32-bit constants (c0, c1, c2, c3) make 512-bits. These

inputs are mapped into a two-dimensional matrix as follows (1).

[

𝑥0 𝑥1 𝑥2 𝑥3

𝑥4 𝑥5 𝑥6 𝑥7

𝑥8 𝑥9 𝑥10 𝑥11

𝑥12 𝑥13 𝑥14 𝑥15

] ← [

𝑐0 𝑘0 𝑘1 𝑘2

𝑘3 𝑐1 𝑣0 𝑣1

𝑡0 𝑡1 𝑐2 𝑘4

𝑘5 𝑘6 𝑘7 𝑐3

] (1)

The matrix in (1) will then be shuffled using the quarterround function depicted in Figure 2, the

quarterround function involves the addition operation of modulus 232 (+), XOR ⊕, and left-shift

operation (<<<) on a 32-bit word input. This operation is carried out repeatedly to produce a keystream

of sufficient length to encrypt or decrypt the data. To randomize it first use the columnround function

by applying the quarterround function to each column of the matrix, after that the rowround function is

applied which applies the quarterround function to each row of the matrix. The combination of these

two functions is also called the doubleround function. After that, the littleendian function is applied to

convert the data from the big-endian byte sequence to the little-endian byte sequence (Jawad Kubba &

Hoomod, 2019; Muhalhal & Alshawi, 2022; Waleed et al., 2021). When finished, the keystream will be

created using (2).

𝑘𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚 = 𝑋 + 𝑑𝑜𝑢𝑏𝑙𝑒𝑟𝑜𝑢𝑛𝑑𝑟(𝑥) (2)

Encryption is carried out by performing an XOR ⊕ operation between the keystream and the

plaintext and decryption is carried out by performing an XOR ⊕ operation between the keystream and

the ciphertext.

Fig. 2 Quarterround Function

Hash Function SHA-256

In short, a hash function is a function that converts an arbitrary input message into a message of a

certain length according to the hash function used (M. R. Anwar et al., 2021) as shown in Fig 3. The

SHA-256 hash function can calculate a 256-bit hash value for a 512-bit input message. If the input

https://doi.org/10.33395/sinkron.v9i1.13049

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 8, Number 1, January 2024

DOI : https://doi.org/10.33395/sinkron.v9i1.13049

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 224

message is more than 512-bit, the message is divided into many 512-bit data blocks. If the last block is

smaller than 512-bit, then the block will be filled with one 1-bit until the block is 512-bit long. The

SHA-256 algorithm calculates the hash value for each data block one by one, the hash result of the block

becomes the input hash for calculating the hash of the next data block. The results of this last data block

represent the hash value of the entire message (M. R. Anwar et al., 2021; Martino & Cilardo, 2020; Tran

et al., 2021).

Fig. 3 Hash Function

Image Encryption and Decryption Method Proposed

The image is first read for each pixel, and then the values of the red, green, and blue colors are read

as bytes, after that, the image bytes will be encrypted using a nonce consisting of 8 random bytes taken

from a password from the word 'Password)(*&^%$#@!123' that converted using the SHA-256 hash

function, so that whatever the length of the word, the key will remain consistent at 256-bit. The resulting

ciphertext bytes will then be combined with a nonce which is then exported into an encrypted image.

For the decryption process, the encryption image will be read for each pixel, then read the values of

the red, green, and blue colors as bytes, then take the 8-byte nonce at the beginning of the image byte

and insert 8 bytes of the number 0 at the end of the image byte so that there is no error when exporting

the image.

The method used to encrypt images can be seen in Figure 4. The PIL package is used to read images

and export images.

Encryption Scheme Decryption Scheme

Fig. 4 Proposed Encryption and Decryption method

The longer the possible key, the more resistant it will be to brute-force attacks. In this study, the key

length used was 256-bit. The number of possible keys in the 256-bit key space is 2256. This is a very

large number and is difficult to guess randomly through brute-force attacks. Salsa20 security is also

https://doi.org/10.33395/sinkron.v9i1.13049

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 8, Number 1, January 2024

DOI : https://doi.org/10.33395/sinkron.v9i1.13049

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 225

influenced by other factors such as the strength of the hash function, the use of random nonce, and the

overall implementation of the algorithm.

Evaluation of the Quality of Encryption and Decryption Results

Histogram analysis can be done by comparing the histogram of the original image with the histogram

of the image that has undergone the encryption process. By examining the distribution of pixel intensities

in an image to obtain information about the distribution of pixel values contained in it, we can identify

patterns, symmetry, brightness and contrast in the image which can help us understand its visual

characteristics (Arab et al., 2019; Gupta et al., 2020; Jangir & Pandey, 2021; Mansouri & Wang, 2021),

for calculations, 256 bins are used and the image will be converted to black and white before testing.

Due to evaluate the effectiveness of encryption, we also calculate entropy. Entropy is a matrix that

provides information about the complexity of the patterns contained in the distribution of pixel values

in the image. To simplify calculations, a probability distribution from the histogram is used which is

then applied to the entropy formula from Shannon Entropy (SE) (Cincotta et al., 2021; Mansouri &

Wang, 2021; Naif et al., 2023; Zou et al., 2020). Equation (3) explains how to calculate Shannon

Entropy. If the encryption succeeds in randomizing the data well, then the entropy value of the encrypted

image will be high, approaching 8, which indicates that the information in the image has been randomly

distorted and is difficult to predict.

𝐻(𝑃𝑖) = ∑ 𝑃(𝑙)𝐿
𝑙−1 𝑙𝑜𝑔(𝑃(𝑙)) (3)

The values (P1, P2, P3, …, Pk) are blocks obtained from image P and 𝐻(𝑃𝑖) is (SE) of that block where

𝑃(𝑙)is the probability of 𝑙 entropy value calculated for the original image and the resulting image

encryption is presented in Table 1. Two essential tests for security analysis against differential attacks

are the Number of Pixel Change Rate (NPCR) and Unified Average Changing Intensity (UACI). NPCR

measures the rate of change in pixel values in an encrypted image when there is a random modification

of one pixel in the original image. For example, I1 and I2 are two different images with difference of 1

pixel, and E1 and E2 are encrypted images.

𝑁𝑃𝐶𝑅 =
∑ ∑ 𝐷(𝑖,𝑗)𝑁

𝑗=1
𝑀
𝑖=1

𝑀 𝑥 𝑁
𝑥 100% (4)

The NPCR of the encrypted image is calculated using the formula in (4), where N and M are the

width and height of the image.

𝐷(𝑖, 𝑗) = {
0, 𝑤ℎ𝑒𝑛 𝐸1(𝑖, 𝑗) = 𝐸2(𝑖, 𝑗)

1, 𝑤ℎ𝑒𝑛 𝐸1(𝑖, 𝑗) ≠ 𝐸2(𝑖, 𝑗)
 (5)

D(i, j) is a bipolar row of the same size as E1 and E2 (S. Anwar & Meghana, 2019; Jangir & Pandey,

2021; Mansouri & Wang, 2021) as given by (5).

𝑈𝐴𝐶𝐼 = ∑ ∑ (
𝐸1(𝑖,𝑗)− 𝐸2(𝑖,𝑗)

𝑊 𝑥 𝐻
)𝑁

𝑗=1
𝑀
𝑖=1 𝑥 100% (6)

Here, E(i, j) is the pixel value at position (i, j) of the encrypted image. UACI is used to measure the

average intensity of the encrypted image which can be calculated using (6). In UACI and NPCR

calculations the image is converted to black and white to focus on image structure, color consistency,

and lighten computation (Jangir & Pandey, 2021; Mansouri & Wang, 2021).

Peak Signal-to-Noise Ratio (PSNR) is used to measure the level of distortion or noise that appears

during the encryption and decryption process. Meanwhile, Mean Square Error (MSE) is used to compare

pixel values between the original image and the encrypted image (S. Anwar & Meghana, 2019; Jangir

& Pandey, 2021; Setiadi, 2021). MSE can be calculated with (7).

https://doi.org/10.33395/sinkron.v9i1.13049

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 8, Number 1, January 2024

DOI : https://doi.org/10.33395/sinkron.v9i1.13049

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 226

𝑀𝑆𝐸(𝑓, 𝑔) =
1

𝑚𝑛
∑ ∑ (𝑓𝑖𝑗 − 𝑔𝑖𝑗)2𝑛

𝑗=1
𝑚
𝑖=1 (7)

Where f = data matrix from the original image, g = Data matrix from the encrypted image, m = Pixel

row number with row index i, n = Pixel column number with column index j. PSNR and MSE are

inversely related, where PSNR will decrease as the MSE value increases. If the PSNR value is above 30

dB then it can be said to be ideal (Setiadi, 2021).

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
𝑚𝑎𝑥𝑣𝑎𝑙2

𝑀𝑆𝐸
) (8)

Equation (8) shows how to calculare PSNR, maxval value is the maximum signal value in the original

image. PSNR provides an indication of the extent to which the decrypted image approaches the original

image in terms of quality. The higher the PSNR value, the better the decryption quality.

RESULT

After evaluating using 5 images, Clegg, Lena, Monarch, Peppers, and Tulips, we get the following

results, in Table 1 show that the NPCR value produced is more than 99% and the average UACI value

produced is more than 50%. This NPCR value shows that the method above is very effective in

randomizing image pixels into an encrypted image. This is supported by the relatively high UACI value,

indicating that the change in pixel intensity in the encrypted image is high. Apart from that, the MSE

value of each image is also close to 0, which indicates that there is only a small error in the decrypted

image, then the average PSNR value obtained is more than 50 dB. This is shown a small error rate, the

PSNR value is relatively high and indicates that the image quality is ideal after the decryption process.

Table 1. Entropy, MSE, PSNR, NPCR, and UACI Calculation Results

Image Size
Entropy

NPCR UACI MSE PSNR
Original Encrypted

clegg 815 x 880 7,67 7,63 99,56 69,28 0,08 58,62

lena 512 x 512 7,44 7,63 99,45 55,87 0,09 58,45

monarch 768 x 512 7,18 7,62 99,46 55,14 0,04 61,89

peppers 512 x 512 7,57 7,63 99,46 59,85 0,03 52,84

tulips 768 x 512 7,69 7,63 99,53 66,68 0,10 57,71

Here, we got similar entropy values indicating that the encryption algorithm performs consistently

across images. This suggests that the algorithm has no bias towards any type of images and likely

produces a similar degree of randomness. An entropy value close to 8 also means that the information

in the image is random and difficult to predict.

DISCUSSIONS

Through this research, We try to encrypt images by reading each pixel in the image and converting

the red, green, and blue values in it to bytes so that the image data obtained can be encrypted or decrypted

using the pycryptodome package. After evaluation, the results we got were quite satisfactory, but the

encrypted image showed a histogram that was not evenly distributed. In Table 2 the encrypted image

histogram shows that there are parts of the histogram that are not evenly distributed, this is because not

all of the ciphertext bytes are ciphertext, in the first 8 bytes of data a nonce is inserted for the decryption

process, while the rest which is evenly distributed is the actual ciphertext. The entropy calculation results

in Table 1 show that the image encryption results are consistent at 7.62 and 7.63 for all images even

though the original images have varying entropy.

Table 2. Comparison Result of Image and Histogram

Original Original Histogram Encrypted Encrypted Histogram Decrypted

https://doi.org/10.33395/sinkron.v9i1.13049

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 8, Number 1, January 2024

DOI : https://doi.org/10.33395/sinkron.v9i1.13049

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 227

Based on Table 1 we got quite ideal values, this is because the image differences are only located in

the last 8 pixels, this is caused by the addition of 8 nonce bytes which are inserted at the beginning of

the ciphertext byte before it is exported into an image, the last 8 ciphertext bytes will be lost in image

export process because the pixel bytes have been fulfilled according to the size of the original image.

Because the initial 8 bytes have been taken for the nonce, in the decryption process 8 bytes of data need

to be added to complete the missing bytes, in this study I inserted 8 bytes 0 to complete it, this causes

the last 3 pixels to be an error because each byte consists of 3 bytes, namely red, green, and blue as

shown in Fig 5. An NPCR value close to 100% explains that only a slight pixel difference occurs. The

difference in the image will be visible if the decrypted image is enlarged, the last 3 pixels will be visible

which are different from the original image as shown in Fig 5.

Fig. 5 Pixel Error

Based on previous research, image encryption was carried out with Salsa20 with results of MSE

8945, PSNR -39.51, NPCR 97.34, and UACI 32.23 on Lena Image at size 256*256 (Mohaisen &

Mohammed, 2020). This research obtained higher results than previous research, namely MSE 0.09,

PSNR 58.45, NPCR 99.45, UACI 55.87, despite using the same image at a higher resolution of 512*512.

CONCLUSION

In this research, image encryption was carried out using pycryptodome package with the Salsa20

algorithm. The key used is 256-bit long which is obtained from key conversion using SHA-256, even

https://doi.org/10.33395/sinkron.v9i1.13049

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 8, Number 1, January 2024

DOI : https://doi.org/10.33395/sinkron.v9i1.13049

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 228

though the attacker knows how to get the nonce from the image, the key space has a combination of 2256

in length so it is quite safe from brute force attacks. Histogram analysis shows that the histogram is not

distributed evenly due to the addition of 8 bytes inserted at the beginning of the ciphertext byte. The

entropy value shows that the encrypted image is consistent at 7.62 and 7.63 even though the original

image has various entropy. The NPCR value produced is more than 99% and the highest UACI value

produced is 69.28%, based on these results it has been seen that the encryption results are effective in

randomizing image pixels, this is supported by the high UACI value, which means that the change in

pixel intensity in the encryption image is relatively high. The MSE value obtained is close to 0, which

means very few errors occur, apart from that the resulting PSNR value is more than 50 dB, this value

can be categorized as ideal. Based on the data above we can conclude that our proposed method is

effective and feasible for image encryption with the Salsa20 algorithm, to get the same image decryption

results as the original image can be done by generating a nonce without inserting it in the image.

REFERENCES

Anwar, M. R., Apriani, D., & Adianita, I. R. (2021). Hash Algorithm in Verification Of Certificate Data

Integrity And Security. Aptisi Transactions on Technopreneurship (ATT), 3(2), 65–72.

https://doi.org/10.34306/att.v3i2.212

Anwar, S., & Meghana, S. (2019). A pixel permutation-based image encryption technique using chaotic

map. Multimedia Tools and Applications, 78(19), 27569–27590. https://doi.org/10.1007/s11042-

019-07852-2

Arab, A., Rostami, M. J., & Ghavami, B. (2019). An image encryption method based on chaos system

and AES algorithm. Journal of Supercomputing, 75(10), 6663–6682.

https://doi.org/10.1007/s11227-019-02878-7

Cincotta, P. M., Giordano, C. M., Alves Silva, R., & Beaugé, C. (2021). The Shannon entropy: An

efficient indicator of dynamical stability. Physica D: Nonlinear Phenomena, 417.

https://doi.org/10.1016/j.physd.2020.132816

Fernandez de Loaysa Babiano, L., Macfarlane, R., & Davies, S. R. (2023). Evaluation of live forensic

techniques, towards Salsa20-Based cryptographic ransomware mitigation. Forensic Science

International: Digital Investigation, 46. https://doi.org/10.1016/j.fsidi.2023.301572

Gupta, A., Singh, D., & Kaur, M. (2020). An efficient image encryption using non-dominated sorting

genetic algorithm-III based 4-D chaotic maps: Image encryption. Journal of Ambient Intelligence

and Humanized Computing, 11(3), 1309–1324. https://doi.org/10.1007/s12652-019-01493-x

Hameed, R. S., Hussein, A., Khalaf, B. A., Fadel, A. H., Hasoon, J. N., Mostafa, S. A., & Khalaf, A.

(2020). A Light-weight ESalsa20 Ciphering based on 1D Logistic and Chebyshev Chaotic Maps.

Solid State Technology. https://www.researchgate.net/publication/344492787

Jangir, A., & Pandey, J. G. (2021). GIFT cipher usage in image data security: hardware implementations,

performance and statistical analyses. Journal of Real-Time Image Processing, 18(6), 2551–2567.

https://doi.org/10.1007/s11554-021-01146-3

Jawad Kubba, Z. M., & Hoomod, H. K. (2019). A Hybrid Modified Lightweight Algorithm Combined

of Two Cryptography Algorithms PRESENT and Salsa20 Using Chaotic System. International

Conference of Computer and Applied Sciences, 199–203.

Mansouri, A., & Wang, X. (2021). Image encryption using shuffled Arnold map and multiple values

manipulations. Visual Computer, 37(1), 189–200. https://doi.org/10.1007/s00371-020-01791-y

Martino, R., & Cilardo, A. (2020). Designing a SHA-256 processor for blockchain-based IoT

applications. Internet of Things, 11. https://doi.org/10.1016/j.iot.2020.100254

Mohaisen, E. L., & Mohammed, R. S. (2020). Improving Salsa20 stream cipher using random chaotic

maps. 2020 3rd International Conference on Engineering Technology and Its Applications,

IICETA 2020, 1–6. https://doi.org/10.1109/IICETA50496.2020.9318902

Muhalhal, L. A., & Alshawi, I. S. (2022). Improved Salsa20 Stream Cipher Diffusion Based on Random

Chaotic Maps. Informatica (Slovenia), 46(7), 95–102. https://doi.org/10.31449/inf.v46i7.4279

Naif, J. R., Ahmed, I. S., Alani, N., & Hoomod, H. K. (2023). EAMSA 512: New 512 Bits Encryption

Al-gorithm Based on Modified SALSA20. Iraqi Journal for Computer Science and Mathematics,

131–142. https://doi.org/10.52866/ijcsm.2023.02.02.011

https://doi.org/10.33395/sinkron.v9i1.13049

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 8, Number 1, January 2024

DOI : https://doi.org/10.33395/sinkron.v9i1.13049

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 229

Pabbi, A., Malhotra, R., & Manikandan, K. (2021). Implementation of least significant bit image

steganography with advanced encryption standard. 2021 International Conference on Emerging

Smart Computing and Informatics, ESCI 2021, 363–366.

https://doi.org/10.1109/ESCI50559.2021.9396884

Reza, S. M. S., Arifeen, M. M., Tiong, S. K., Akhteruzzaman, M., Amin, N., Shakeri, M., Ayob, A., &

Hussain, A. (2020). Salsa20 based lightweight security scheme for smart meter communication in

smart grid. Telkomnika (Telecommunication Computing Electronics and Control), 18(1), 228–233.

https://doi.org/10.12928/TELKOMNIKA.V18I1.14798

Setiadi, D. R. I. M. (2021). PSNR vs SSIM: imperceptibility quality assessment for image

steganography. Multimedia Tools and Applications, 80(6), 8423–8444.

https://doi.org/10.1007/s11042-020-10035-z

Singhal*, Mr. V., Shukla, Mr. Y. K., & Prakash, Dr. N. (2020). Image Steganography embedded with

Advance Encryption Standard (AES) securing with SHA-256. International Journal of Innovative

Technology and Exploring Engineering, 9(8), 641–648.

https://doi.org/10.35940/ijitee.H6442.069820

Tran, T. H., Pham, H. L., & Nakashima, Y. (2021). A High-Performance Multimem SHA-256

Accelerator for Society 5.0. IEEE Access, 9, 39182–39192.

https://doi.org/10.1109/ACCESS.2021.3063485

Waleed, J., Noori Mazher, A., & Tariq MaoLood, A. (2021). Developed Lightweight Cryptographic

Algorithms for The Application of Image Encryption: A Review. Journal of Al-Qadisiyah for

Computer Science and Mathematics, 13(2), 11–22. https://doi.org/10.29304/jqcm.2021.13.2.788

Zou, Y., Zhang, J., Upadhyay, M., Sun, S., & Jiang, T. (2020). Automatic image thresholding based on

Shannon entropy difference and dynamic synergic entropy. IEEE Access, 8, 171218–171239.

https://doi.org/10.1109/ACCESS.2020.3024718

https://doi.org/10.33395/sinkron.v9i1.13049

