

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 8, Number 2, April 2024

DOI : https://doi.org/10.33395/v8i2.13386

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

* Corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 902

Implementation of App Engine and Cloud

Storage as REST API on Smart Farm

Application

Khoirul Azkiya1)*, Muhamad Irsan2), Muhammad Faris Fathoni3)
1)2)3)Telkom University, Indonesia

1)khoirul.azkya@gmail.com, 2)irsanfaiz@telkomuniversity.ac.id, 3)mfarisfwork@telkomuniversity.ac.id

Submitted :Jan 11, 2024 | Accepted : Jan 14, 2024 | Published : Apr 1, 2024

Abstract: Smart Farm is an agricultural application that uses machine learning and

cloud computing technology to improve efficiency in the farming process.

Technological advancement and sustainable agriculture are two essential aspects of

supporting global food security. This research investigates the implementation of

App Engine and Cloud Storage in developing REST API in Smart Farm applications.

By utilizing cloud computing technology, such as App Engine, and cloud storage,

such as Cloud Storage, we can create efficient solutions to monitor and manage

agriculture better. This research implements an App Engine and Cloud Storage to

develop a REST API that allows Smart Farm application users to access data and

control farming devices efficiently. The authors designed, developed, and tested this

system to ensure optimal performance and reliability in agricultural data collection

and distribution. This method has several significant advantages. First, App Engine

allows for easy scalability, ensuring the system can handle increased data demand

without disruption. Secondly, Cloud Storage provides secure and scalable storage for

agricultural data, which can be accessed from anywhere. This provides easy and

quick access to critical data for farmers. Moreover, the use of cloud technology also

reduces infrastructure and maintenance costs. The developed system integrates the

App Engine and Cloud Storage with the Smart Farm application. The App Engine is

a processing engine that receives user requests via the REST API, processes the

required data, and provides appropriate responses. Like image data, farm data is

stored and managed on Cloud Storage. Users can access this data through the Smart

Farm app or other devices, enabling better farming monitoring and decision-making.

Keywords: REST API, App Engine, Cloud Storage, Smart Farm, black box.

INTRODUCTION

Agriculture has become the main focus of efforts to maintain food security in a globalized era that demands

sustainability (Harison et al., 2017). In Indonesia, agriculture is a source of livelihood and a key factor in meeting

people's needs (Harison et al., 2017). Unfortunately, the efficiency of farmers' work is often less than optimal. The

decisions made affect agricultural yields and increase the time spent (Achyar et al., 2020). Although some have

adequate knowledge of the agricultural sector, many farmers in Indonesia continue to rely on personal experience

and instinct in making decisions on the farm (Achyar et al., 2020).

The rapid development of technology has facilitated the development of web services and web-based

applications as a solution in supporting various human activities. Many web applications today are inseparable

from two main components: front end and back end. The front end is the part of the web application that interacts

directly with the user, while the back end includes aspects of the server, application, and database (Guntara &

Azkarin, 2023). Back-end development focuses on the server-side aspects. The program code of the back-end

application allows interaction between the browser and retrieval of data from the database (Guntara & Azkarin,

2023).

So, the Smart Farm application was developed using Application Programming Interface (API) technology.

API is a software interface that contains a collection of instructions or functions, allowing communication between

various software applications (Ariantara et al., 2020). Representational State Transfer (REST) is an API

architecture that facilitates the transfer and request of data over the HTTP protocol, known for its ease in the mobile

cloud paradigm (Suzanti et al., 2020). The REST API here will integrate the application with the server and

database. This application is planned to support farmers by providing quick access through the application to

mailto:mfarisfwork@telkomunivers

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 8, Number 2, April 2024

DOI : https://doi.org/10.33395/v8i2.13386

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

* Corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 903

optimize the farmer's work process.

This application development incorporates cloud computing technologies, such as App Engine for building

web applications and Cloud Storage for data storage. App Engine provides efficient infrastructure, while Cloud

Storage provides flexibility in storing the application's data needs (Cloud, 2023). They are an essential part of the

cloud technology infrastructure that supports multiplatform application development and management. Through

web service architecture, applications can be integrated with various platforms through the same protocol, enabling

more efficient communication between programs (Choirudin & Adil, 2019).

By implementing App Engine and Cloud Storage as REST API on the Smart Farm application, it is expected

that farmers can access the application and upload images of their plants more efficiently. App Engine and Cloud

Storage as REST API on Smart Farm application will increase farmers' productivity, reduce the risk of crop failure

due to plant diseases, and strengthen the country's food security. Using technology, Indonesia is expected to

become 'Lumbung Padi Asia' capable of producing high-quality rice and maintaining stable and quality food

availability.

LITERATURE REVIEW

Related Research

Research related and relevant to the background of the Smart Farm application problem. Table 1 is a summary

of previous research related to this research, as shown in Table 1.

Table 1. Related Research

Author / Year Titles Problems Solutions Results

Wiji Sulistiani,

Wiwin Sulistyo

/ 2020

Implementasi Web

Service dengan

Metode REST

Berbasis Golang

pada Layanan

Google Cloud

Platform di PT

Sumber Alfaria

Trijaya, Tbk

PT Sumber Alfaria

Trijaya, Tbk, faced

problems

synchronizing

master data between

on-premises servers

in branch offices

and cloud storage

on the Google

Cloud Platform.

This problem

impacts the Master

Data Management

(MDM) strategy.

Implemented

Golang-based Web

Service application

with REST method

and connected on-

premises

application with

cloud storage.

Allows real-time

access to

synchronized

master data,

optimally used for

various business

needs in multiple

applications and

divisions.

The results showed that the

implementation successfully

synchronized the Master Data

thoroughly. The system

running on Google Cloud

Platform services and

accessed through the

MasterStore application runs

smoothly, facilitating fast

data exchange with smaller

data sizes in JSON format.

This gives management

better capabilities in making

business decisions.

Adam Firdaus,

Dean Apriana

Ramadhan /

2021

Pengembangan

Back End Berbasis

REST API pada

Sistem E-

Partisipasi dan E-

Inisiatif Patriot

Pangan

The Food Insecurity

Agency has a

system that needs to

be more responsive

to detect food

insecurity in the

community. The

limitation of public

participation in the

Patriot Pangan

application is

limited to data

reporting only, so it

is necessary to

develop features in

the application that

aim to attract public

involvement.

This research

involves the

development of a

REST API-based

backend using

Node.JS with

Express.Js

framework and

MongoDB non-

relational

database. This

research also

includes the

implementation of

access tokens in

the form of JSON

Web Tokens

(JWT) to improve

API access

security.

The development of the

REST API-based back end of

the E-Participation and E-

Initiative Food Patriot

application uses Node.JS

with the Express.Js

framework and the

MongoDB non-relational

database. This development

was carried out using the

scrum method for five sprints

and resulted in a total of 23

APIs that have been

successfully tested. This

system is expected to help

detect food insecurity cases

early and help the community

achieve crowdfunding to

overcome food insecurity

cases quickly.

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 8, Number 2, April 2024

DOI : https://doi.org/10.33395/v8i2.13386

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

* Corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 904

Rangga Gelar

Guntara,

Varinia Azkarin

/ 2023

Implementasi dan

Pengujian REST

API Sistem

Reservasi Ruang

Rapat dengan

Metode Black Box

Testing (Studi

Kasus: PT Lizzie

Parra Kreasi)

Highlighting the

shortcomings in the

backend application

and database

management

system that still

needs to be

available to

facilitate the

management of

meeting room

reservation data at

PT Lizzie Parra

Kreasi.

REST API

development is

needed as an

intermediary

between the front

end and the server

to facilitate data

exchange. The

author designed

and implemented a

REST API using

the Node.js

platform to

improve the

efficiency of the

reservation system

at PT Lizzie Parra

Kreasi.

Implementing the REST API

using Node.js provides

superior performance

compared to implementing

the REST API using the PHP

programming language.

Testing with the black box

testing method also shows

that each function on each

API endpoint runs according

to the expected output, both

through the HTTP GET,

POST, PUT, and DELETE

methods. These findings

confirm that the REST API

for the meeting room

reservation system at PT

Lizzie Parra Kreasi can be

designed and implemented

effectively, allowing the

client application to exchange

data with the database. Thus,

the reservation history can be

stored properly.

Representational State Transfer

REST (Representational State Transfer) is a standard protocol for web communication using Hypertext Transfer

Protocol (HTTP) links (Susanti & Mailoa, 2020). It enables clients to send requests via HTTP methods, and servers

respond with REST Responses. REST messages consist of headers and bodies. The HTTP header records each

transaction on HTTP, while the body contains the data to be sent (Susanti & Mailoa, 2020). The primary REST

methods include GET, POST, PUT, and DELETE (Perkasa & Setiawan, 2018).

One of REST advantages is its utilization of commonly used Internet communication protocols like HTTP. It is

lightweight and widely adopted in cloud-based API development by companies such as Amazon, Microsoft, and

Google (Nurfauzia, 2021). Due to this, REST is easily implementable across various platforms. Services on the

web that adhere to REST principles are often referred to as RESTful API.

App Engine on Google Cloud Platform

Google's App Engine serves as a hosting service designed to assist developers in running web applications

without the need to delve into intricate infrastructure aspects (Yusrizal et al., 2017).

Given its utilization of a non-relational database system, App Engine proves suitable for managing and storing

unstructured data (Nugroho & Mustofa, n.d.). Within the Smart Farm context, the App Engine functions as a

pivotal platform for hosting cloud-based applications. Its roles include backend management, provision of REST

API, seamless integration with Cloud Storage, and fortification of application security measures.

Furthermore, App Engine offers robust security and authentication functionalities, enhancing the protection of

sensitive data within Smart Farm applications.

Cloud Storage on Google Cloud Platform

Cloud Storage is commonly characterized as a digital data storage service accessible over the Internet. Its

utilization presents several advantages, including heightened data security, adaptable data accessibility, and a

reduced risk of data loss or corruption (Farizy & Eriana, 2011).

Within the realm of Smart Farming, Cloud Storage serves as a pivotal solution for storing various data types,

including images and configuration files. This strategic usage enables Smart Farms to optimize their data

management and analysis processes, fostering effective and efficient operations.

Node.js

Node.js stands as a JavaScript framework utilized in web development, catering to both client and server-side

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 8, Number 2, April 2024

DOI : https://doi.org/10.33395/v8i2.13386

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

* Corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 905

scripting (Kurniawan et al., 2020). In the context of Smart Farm applications, Node.js serves as the backend

technology for implementing REST API.

Its primary strengths lie in delivering exceptional responsiveness and performance, facilitating seamless

integration with various devices, and optimizing applications to enhance efficiency and productivity within

farming operations.

MongoDB

MongoDB stands out as a NoSQL database designed for application development. Unlike traditional SQL

databases, MongoDB stores documents in BSON (Binary JSON) format, enhancing readability (Bhaswara et al.,

2017). Its architecture offers flexibility, enabling seamless database scaling and integration with a diverse array

of programming languages.

In the context of Smart Farm applications, MongoDB proves invaluable as a data storage solution, particularly

for managing access information of farmers who have registered accounts within the Smart Farm system.

JSON

JSON stands for JavaScript Object Notation, a data exchange format invented by Douglas Crockford in 2006

(Warsito et al., 2017). Designed to be understood by both computers and humans (Triawan & Prasetiyo, 2019).

JSON has a lighter data size than XML, so the data exchange process becomes faster (Warsito et al., 2017). The

use of JSON format is necessary in designing applications that use RESTful API and Web Service methods, as it

allows efficient storage and data exchange between various application components (Warsito et al., 2017).

Black Box Testing

Black Box testing focuses on the functionality of the software without paying attention to details (Wijaya &

Astuti, 2021). This method involves observing the execution results through test data, thus emphasizing the

system's functionality (Hanifah et al., 2012). A series of tests on inputs and functions are carried out to find errors

or errors so that the system can be improved and run as expected (Wijaya & Astuti, 2021; Wiradiputra et al., 2021).

In the context of testing in the Smart Farm application, Black Box Testing with the Equivalence Partitions

technique will be used. This technique helps prepare test cases and test functionality and detect input errors on the

test page (Wijaya & Astuti, 2021). Testing is done by entering data that does not match the data type or using

random data (Hanifah et al., 2012).

METHOD

Figure 1. Research Method

The core of this research is the implementation of App Engine and Cloud Storage as REST API in the Smart

Farm application. It involves concept understanding, requirement identification, designing, and practical

implementation. Concept understanding is necessary to configure App Engine and Cloud Storage.

After understanding what is needed, the author will design a system so that the App Engine and Cloud Storage

can be integrated into a REST API, making it easier to access data and services. This involves configuring the

App Engine and Cloud Storage. Next is the technical implementation to develop the REST API using NodeJS,

which will bridge the Smart Farm application and the cloud, as shown in Figure 1.

Literature Review

Start

App Engine and

Cloud Storage

Configuration

App Engine and

Cloud Storage

Testing with Black

Box Method

App Engine and

Cloud Storage

Implementation

End

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 8, Number 2, April 2024

DOI : https://doi.org/10.33395/v8i2.13386

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

* Corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 906

This step results in a working URL or endpoint to access data and services in Cloud Storage via the App

Engine. Through this testing, there is great potential to improve the performance of the Smart Farm application

and enable more efficient use of cloud technology.

Figure 2. System Architecture

The system architecture in this research helps organize how the required components, such as App Engine,

Cloud Storage, REST API as a Web Service API, and MongoDB as a Database, will interact, as shown in Figure

2. This system architecture will be helpful in planning functionality or structure to achieve the desired goals. App

Engine provides computing and storage services for web and mobile applications and runs applications created

with various programming languages and frameworks. Cloud Storage provides data storage services in the cloud

and supports various data types, including images. NodeJS, as a REST API, will provide an interface to access

data and functionality from cloud services. The interaction on the App Engine will access data from Cloud

Storage using NodeJS as a REST API; the App Engine will process the data and generate a response, and then

the response will be sent to the user via the REST API.

The method that will be used in this research is the Black Box Testing method. Black Box Testing will focus

on the functionality of the Endpoint generated by the App Engine without paying attention to details. The technique

that will be used in this Black Box Testing is Equivalence Partitions. This technique will compile test cases and

functionality and detect input errors on the test page (Wijaya & Astuti, 2021). Testing is done by entering data that

does not match the data type or using random data (Hanifah et al., 2012).

RESULT

Endpoint Design

The following Endpoint design includes URI (Uniform Resource Identifier). This character identifies from a

web, or it can also be called the location of a web, which functions to process input from the user. Method or HTTP

Method is the method of HTTP Request that will be done on the URI, and Process is what will happen if the user

accesses the URI, as shown in Table 2.

Table 2. Endpoint Design

Method URI Process

GET / Main page

POST /api/v1/users/signin User logging in

POST
/api/v1/users/signup

Registering user into the database

POST /api/v1/uploads User uploads an image

Cloud Computing Implementation

The following Endpoint design includes URI (Uniform Resource Identifier). This character identifies from a

web, or it can also be called the location of a web, which functions to process input from the user. Method or HTTP

Method is the method of HTTP Request that will be done on the URI, and Process is what will happen if the user

accesses the URI.

The results obtained from the App Engine Implementation are that the NodeJS script created and deployed on

the App Engine will display the main page of the REST API, which uses the HTTP Method GET as an HTTP

Request, as shown in Figure 3.

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 8, Number 2, April 2024

DOI : https://doi.org/10.33395/v8i2.13386

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

* Corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 907

Figure 3. App Engine Implementation Result

The results obtained from the Cloud Storage Implementation are buckets that store images from user upload

input in the Smart Farm application, as shown in Figure 4.

Figure 4. Cloud Storage Implementation Result

Endpoint Implementation

After designing, the author implements each endpoint, and the author implements the App Engine with the

database when the user logs in or registers in the Smart Farm application. The author tests the endpoint using the

Postman application, which functions to manage HTTP Request and HTTP Method on a REST API that has been

created.

The payload generates JSON as a message that the image

has been successfully uploaded to Cloud Storage with data containing a URL from the image that can be accessed,

as shown in Figure 5.

Figure 5. Result of API User Uploads an Image

The payload will produce JSON in the form of a success status, which means that the request requested by the

user when inputting data into the Smart Farm application has been successfully received by the server, as shown

in Figure 6. The payload token is JSON Web Token (JWT), which provides an identifier to the user that the user

has logged in. Payload data contains details of user input from the Smart Farm application during registration; the

password will be encrypted with the crypt method. The data has been added to MongoDB as collections, as shown

in Figure 7.

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 8, Number 2, April 2024

DOI : https://doi.org/10.33395/v8i2.13386

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

* Corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 908

Figure 6. Result of API User Account Registration

Figure 7. Results of Account Data in MongoDB

Next, the author logs in to the Smart Farm application. The resulting payload is a message that has successfully

logged into the Smart Farm application with the identifier given to the token in JSON Web Token, as shown in

Figure 8.

Figure 8. Result of API User Account Login

Testing

After the implementation stage, the next step is to test the API with the black box method. This stage aims to

determine whether the function of the application has run well and following the expected output. Testing is carried

out on each endpoint, with the results presented in the following Table 3.

Table 3. Results of Black Box Testing

Testing Activities Test Case Expected Outputs Results Conclusion

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 8, Number 2, April 2024

DOI : https://doi.org/10.33395/v8i2.13386

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

* Corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 909

User logging in Enter a value in the

JSON key email and

password

A success message and

JSON Web Token as the

user identifier are displayed.

Data Match Valid

Registering user

into the database

Enter values in the

JSON keys name,

email, and password.

A success message appears

and the user data has been

entered into the database.

Data Match Valid

User uploads an

image
Enter the value of the

image file in the form-

data.

A successful upload

message appears and the

image URL data on Cloud

Storage.

Data Match Valid

DISCUSSION

This research has focused on developing a Smart Farm application by integrating App Engine technology and

Cloud Storage as a REST API. The API Endpoint design, involving URIs, HTTP methods, and processes, provides

a clear structure for the application's interaction with the server and database. The implementation of App Engine

and Cloud Storage has been successfully carried out, and testing shows that the Smart Farm application has been

well designed, offering the potential for overall performance improvement. Despite the success, the research also

identified some limitations that must be addressed. Application scalability can be a challenge if the number of

users increases significantly. Data security and privacy, especially farmer data and plant images stored on Cloud

Storage, as the buckets on Cloud Storage are public, thus requiring further attention. The use of APIs in this

research is limited to the login process, user account registration, and image uploading, creating room for further

development in future research. Comparing this research with previous research shows progress in endpoint design

and cloud computing integration. JSON Web Token (JWT) for user authentication reflects a more enhanced

security approach than traditional methods. The success of this research also positively contributes to supporting

sustainable agriculture through the utilization of API technology and cloud computing and provides a basis for

further development.

CONCLUSION

Based on the research results, implementing the App Engine and Cloud Storage on the Smart Farm Application

can be designed and implemented correctly. The stages passed in this research include problem identification, data

collection and literature study, design, implementation, and testing with the black box method. The use of APIs in

this research allows the Smart Farm Application to exchange data with the database and store images on Cloud

Storage so that user account data that register and upload images to the Smart Farm Application can run properly.

As for the test results with the black box testing method, which shows that all functions of each API endpoint run

according to the expected output, through the HTTP method, all endpoints can run well, starting from the user

registering, the user logging in, and the user uploading the image with the POST method.

REFERENCES

Achyar, M. K. U., Zulhelmi, M. R., Sumanjayanti, R., Jatri, R. A. M., Sujarwo, A., & Fudholi, D. H. (2020).

Aplikasi Pintar Bertani (SIPITA) Sebagai Solusi Efektif Mendapatkan Hasil Bertani yang Maksimal. Jurnal

Teknik Elektro, FT UGM, 21–26.

Ariantara, I. G. M., Arwani, I., & Putra, W. H. N. (2020). Penerapan REST API dalam Pengembangan Aplikasi

Pemesanan RentalMobil berbasis Web dan Mobile (Studi Kasus: CV. Dwi Cipta Rent Car). Jurnal

Pengembangan Teknologi Informasi Dan Ilmu Komputer, 4(8), 2569–2576.

Bhaswara, F. A., Sarno, R., & Sunaryono, D. (2017). Perbandingan Kemampuan Database NoSQL dan SQL dalam

Kasus ERP Retail. Jurnal Teknik ITS, 6(2), 510–514. https://doi.org/10.12962/j23373539.v6i2.24031

Choirudin, R., & Adil, A. (2019). Implementasi Rest Api Web Service dalam Membangun Aplikasi Multiplatform

untuk Usaha Jasa. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 18(2), 284–

293. https://doi.org/10.30812/matrik.v18i2.407

Cloud, G. (2023). Understanding Data and File Storage | App Engine standard environment for Java 8.

Farizy, S., & Eriana, E. S. (2011). Cloud Computing Komputasi Awan (Issue 1).

Firdaus, A., & Ramadhan, D. A. (2021). Pengembangan Back End Berbasis REST API pada Sistem E-Partisipasi

dan E-Inisiatif Patriot Pangan. Jurnal Ilmu Komputer Dan Agri-Informatika, 8(1), 1–9.

https://doi.org/10.29244/jika.8.1.1-9

Guntara, R. G., & Azkarin, V. (2023). Implementasi dan Pengujian REST API Sistem Reservasi Ruang Rapat

dengan Metode Black Box Testing. Jurnal Minfo Polgan, 12(1), 1229–1238.

https://doi.org/10.33395/jmp.v12i1.12691

Hanifah, U., Alit, R., & Sugiarto. (2012). Penggunaan Metode Black Box Pada Pengujian Sistem Informasi Surat

Keluar Masuk. E-Journal UPN “Veteran” Jatim (Universitas Pembangunan Nasional), XI.

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 8, Number 2, April 2024

DOI : https://doi.org/10.33395/v8i2.13386

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

* Corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 910

Harison, Putri, M., & Daratul, W. (2017). Perancangan Aplikasi Bercocok Tanam Padi dan Cabe Kriting Berbasis

Android. Jurnal Nasional Teknologi Dan Sistem Informasi, 3(2), 306–312.

https://doi.org/10.25077/teknosi.v3i2.2017.306-312

Kurniawan, I., Humaira, & Rozi, F. (2020). REST API Menggunakan NodeJS pada Aplikasi Transaksi Jasa

Elektronik Berbasis Android. JITSI : Jurnal Ilmiah Teknologi Sistem Informasi, 1(4), 127–132.

https://doi.org/10.30630/jitsi.1.4.18

Nugroho, A., & Mustofa, T. K. (n.d.). Implementasi Komputasi Awan Menggunakan Teknologi Google App

Engine (GAE) Dan Amazon Web Services (AWS).

Nurfauzia, A. R. (2021). Implementasi Restful Web Service Pada Sistem Informasi Perpustakaan Berbasis

Android. http://repositori.unsil.ac.id/4343/

Perkasa, M. I., & Setiawan, E. B. (2018). Pembangunan Web Service Data Masyarakat Menggunakan REST API

dengan Access Token. Jurnal ULTIMA Computing, 10(1), 19–26. https://doi.org/10.31937/sk.v10i1.838

Sulistiani, W., & Sulistyo, W. (2020). Implementasi Web Service dengan Metode REST Berbasis Golang pada

Layanan Google Cloud Platform (Issue 672015229).

Susanti, E., & Mailoa, E. (2020). RESTful API Implementation in Making a Master Data Planogram Using the

Flask Framework (Case Study: PT Sumber Alfaria Trijaya, Tbk). Journal of Information Technology and

Computer Science, 5(3), 255–269. https://doi.org/10.25126/jitecs.202053189

Suzanti, I. O., Fitriani, N., Jauhari, A., & Khozaimi, A. (2020). REST API Implementation on Android Based

Monitoring Application. Journal of Physics: Conference Series, 1569(2). https://doi.org/10.1088/1742-

6596/1569/2/022088

Triawan, A., & Prasetiyo, M. A. (2019). Penerapan Web Service (XML dan JSON) Untuk Meningkatkan

Performance Pada Informasi Pembayaran Uang Kuliah. Teknois : Jurnal Ilmiah Teknologi Informasi Dan

Sains, 8(1), 78–93. https://doi.org/10.36350/jbs.v8i1.22

Warsito, A. B., Ananda, A., & Triyanjaya, D. (2017). Penerapan Data JSON Untuk Mendukung Pengembangan

Aplikasi Pada Perguruan Tinggi Dengan Teknik Restfull Dan Web Service. Technomedia Journal, 2(1), 26–

36. https://doi.org/10.33050/tmj.v2i1.313

Wijaya, Y. D., & Astuti, M. W. (2021). Pengujian Blackbox Sistem Informasi Penilaian Kinerja Karyawan Pt Inka

(Persero) Berbasis Equivalence Partitions Blackbox Testing of Pt Inka (Persero) Employee Performance

Assessment Information System Based on Equivalence Partitions. Jurnal Digital Teknologi Informasi, 4(1),

22–26. http://jurnal.um-palembang.ac.id/index.php/digital

Wiradiputra, M. R. D., Candiasa, I. M., & Divayana, D. G. H. (2021). Pengembangan dan Pengujian Sistem

Informasi Manajemen Jalan Untuk Pemeliharaan Jalan Di Kabupaten Buleleng Menggunakan Standar Iso

9126. Jurnal Ilmu Komputer Indonesia (JIK), 6(1), 17–26.

Yusrizal, Dawood, R., & Roslidar. (2017). Rancangan Bangun Layanan Web (Web Service) untuk Aplikasi Rekam

Medis Praktik Pribadi Dokter. KITEKTRO: Jurnal Online Teknik Elektro, 2(1), 1–8.

https://jurnal.usk.ac.id/kitektro/article/view/6803/5571

