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Abstract: Nonlinear systems of equations often appear in various fields of science and 

engineering, but their analytical solutions are difficult to find, so numerical methods are 

needed to solve them. Optimization algorithms are very effective in finding solutions to 

nonlinear systems of equations especially when traditional analytical and numerical 

methods are difficult to apply. Two popular optimization methods used for this purpose 

are Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). This study aims 

to compare the effectiveness of GA and PSO in finding solutions to nonlinear systems 

of equations. The criteria used for comparison include accuracy and speed of 

convergence. This research uses several examples of nonsmooth nonlinear systems of 

equations for experimentation and comparison. The results provide insight into when 

and how to effectively use these two algorithms to solve nonlinear systems of equations 

as well as their potential combinations. 
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INTRODUCTION 

Nonlinear systems of equations are problems that are quite difficult to solve. Nonlinear equations 

often cannot be solved by analytical methods, so numerical methods are another solution to solve 

nonlinear systems of equations. Numerical methods are methods used to formulate mathematical 

problems so that they can be solved by ordinary calculation operations.  

There are many numerical methods that can be used to solve a system of nonlinear equations, as 

done by (Sunandar & Indrianto, 2020), by comparing the Newton-Raphson and Secant methods. The 

result obtained is that the Newton-Raphson method produces a more accurate root value compared to 

the Secant method. In addition, the iterations needed to get a convergent value in the Newton-Raphson 

method are only 6 iterations, while the Secant method requires 8 iterations.  

The Newton-Raphson method is good enough, but it requires the derivative of the function f(xn) 

while not all functions can be found easily. This can be overcome with computational intelligence. 

Computational intelligent is a research study used in the field of optimization techniques based on 

intelligent calculation of a structured step (Chu & Tsai, 2007). If the significance value is more than 

0.05, then the residual value is thought to follow a normal distribution. If the p-value is less than 0.05, 

we say that the residual value does not follow a normal distribution. Table 3 displays the results of the 

normalcy test. 

Using optimization algorithms is a very effective way considering that traditional numerical 

methods such as newton raphson are difficult to apply. This research will use two optimization 

algorithms namely genetic algorithm and particle swarm optimitation to solve the nonlinear system of 

equations and compare the performance of both.  
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LITERATURE REVIEW 

Optimization algorithms are very effective in finding solutions to nonlinear systems of equations 

especially when traditional analytical and numerical methods are difficult to apply. 

The following are the steps to use optimization algorithms in finding the solution of nonlinear systems 

of equations: 

1) define a system of nonlinear equations  

Suppose we have a system of nonlinear equations as follows: 
 

{

𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛) = 0

𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛) = 0
⋮

𝑓𝑚(𝑥1, 𝑥2, … , 𝑥𝑛) = 0

 

 

the goal is to find the values (x1,x2,...,xn) that make all the above equations zero. but usually in the 

process of finding a solution we have temporary values for x1,x2,...,xn that make not all equations zero. 

to measure how good or bad these values are, an objective function is created that measures the total 

deviation or error from zero. 

2) form an objective function 

To convert a system of nonlinear equations into an objective function, it is necessary to create a 

function that measures how far the current solution we have is from the desired solution, namely all 

equations in the system are zero. this objective function measures the error of the expected solution. the 

objective function F(x1,x2,...,xn) is formed as the sum of the squares of all equations in the system. 
 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛)2 + 𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛)2 + ⋯ + 𝑓𝑚(𝑥1, 𝑥2, … , 𝑥𝑛)2 
 

The objective function will be zero, if and only if fi(x1,x2,...,xn)=0 

3) use optimization algorithms  

Use an optimization algorithm to minimize the objective function F(x1,x2,...,xn). The optimal solution 

of this objective function is the solution of the nonlinear system of equations. 

Genetic Algorithm is a heuristic search technique based on the idea or principle of evolutionary 

processes, natural selection and genetics to solve an optimization problem. Individuals constantly 

change their genes during the evolutionary process in order to adapt to their environment, where only 

strong individuals would survive. American mathematician John Holland originally created this 

technique in 1975 and published it in his book "Adaption in Natural and Artificial Systems".  

According to (Abiodun M. et al., 2011), the steps of the Genetic Algorithm can be sequenced as follows: 

a. Make the domain of the problem variable as a chromosome of a certain length. Determine the 

chromosome population size and crossover probability; 

b. Define the fitness function, which is used to measure the quality of each chromosome in the problem 

domain; 

c. Generate a random initial chromosome population of a certain length; 

d. Calculate the fitness function for each chromosome; 

e. Select a pair of chromosomes to mate from the population. The parent chromosomes are selected 

based on their fitness values; 

f. Apply genetic operations (crossover and mutation) to create a pair of daughter chromosomes 

(offspring); 

g. Place the created offspring in the initial population; 

h. Swap the initial (previous) population of chromosomes with the new one; 

i. Repeat steps d through i until the stopping criterion is met where the specified number of iterations or 

generations is met. 

Particle Swarm Optimization is influenced by swarms of fish, insects, or birds that can be found in 

nature. A swarm's members are able to communicate with one another and cooperate to identify the best 

course of action. J. Kennedy and R.C. Eberhart first presented this algorithm in 1995. The PSO 

algorithm's fundamental premise is to mimic the actions of a swarm of particles, each of which has the 

capacity to solve the optimization issue. The PSO algorithm refers to individual particles within a herd. 
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Based on both its own and the experiences of other particles in the swarm, each particle navigates the 

search space. The other particles will follow the path taken by the particle that discovers an efficient 

way to get to the best answer. (Caesar et al., 2016). There are several factors that make up the PSO 

algorithm, including the following: 

a. The quantity of particles in a population is known as a swarm. The complexity of the problem 

to be solved determines the size of the swarm. 

b. A particle is an individual within a swarm that explains how to address an issue. The optimal 

solution representation determines the position and velocity of each particle. 

c. Personal Best (pBest), which is the particle's best-ever financial position determined by 

comparing its fitness value to the prior position. 

d. The best particle position, or global best (gBest), is determined by comparing the best fitness 

value of every particle in the swarm. 

e. . Velocity (volocity), where v is a vector indicating the particle's direction of motion. 

f. The influence of variations in particle velocity is managed by the inertia weight, w. 

g. The particle's extent in a single iteration is controlled by the acceleration coefficient. 

Coefficients C1 and C2 have the same value, which falls between 0 and 1, generally speaking. 

For any unique study, you can, however, decide the worth for yourself. 

The update equations for the position and velocity of each particle are as follows: 
 

𝑣𝑖
𝑡 = 𝑤. 𝑣𝑖

𝑡−1 + 𝑐1. 𝑟1(𝑝𝐵𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐2. 𝑟2(𝑔𝐵𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡)     

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡     

 

Where, vi
t is the velocity of particle i at time t, xi

t is the position of particle i at time t, w is the inertial 

weight used to change the previous velocity of a particle, c1 and c2 are the cognitive and social scaling 

parameters, chosen such that c1=c2=2. 0 which allows c1r1 or c2r2 to have an average of 1, r1 and r2 are 

two pickle lines generated from the interval [0,1], Pi is the best position previously reached by the i-th 

particle called pBest, Pg is the best position reached by all particles called gBest. 

 

METHOD 

The stage taken in this study to designing the model are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Block Diagram of Research Procedure 
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RESULT 

In this study, several nonlinear systems of equations from the literature were used to demonstrate the 

performance of swarm optimization algorithms and genetic algorithms and compare the results. Two 

nonsmooth nonlinear systems of equations are chosen (Luo et al., 2008) as follows: 

Example 1 : (Krzyworzcka, 1996) 

 

𝑥1 +
𝑥2

4𝑥4𝑥6

4
+ 0,75 = 0 

 

𝑥2 + 0,405. 𝑒1+𝑥1𝑥2 − 1,405 = 0 

 

𝑥3 −
𝑥4𝑥6

2
+ 1,5 = 0 

 

𝑥4 + 0,605. 𝑒1−𝑥3
2

− 0,395 = 0 

 

𝑥5 +
𝑥2𝑥6

2
+ 1,5 = 0 

 

𝑥6 −  𝑥1𝑥5 = 0 

 

The above 6-dimensional system is solved by GA and PSO and the solution is shown in Table 1. 

 

Tabel 1.Comparison of results from the application of GA and PSO to example 1. 

Solutions GA PSO 

x1 -0.914893 -1.002466 

x2 0.938498 1.002235 

x3 1.121207 -0.997671 

x4 0.862838 1.003026 

x5 -1.049455 -0.998478 

x6 0.960139 1.001112 

f1(x) 0.017525 -0.000307 

f2(x) -3.101453 0.000333 

f3(x) 0.035429 0.000257 

f4(x) -5.551115  0.000206 

f5(x) 0,0 -0.000154 

f6(x) 0,0 0.000170 

 

 

Example 2 : geometry size of thin wall rectangle girder section 

 

𝑏ℎ −  (𝑏 − 2𝑡)(ℎ − 2𝑡) − 165 = 0 

 

𝑏ℎ3

12
−

(𝑏 − 2𝑡)(ℎ − 2𝑡)3

12
− 9369 = 0 

 

2(ℎ − 𝑡)2(𝑏 − 𝑡)2𝑡

ℎ + 𝑏 − 2𝑡
− 6835 = 0 

 

where b is the width of the section, h the height of the section and t is thickness of the section.(Luo et 

al., 2008) 
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Tabel 2.Comparison of results from the application of GA and PSO to example 2. 

Solutions GA PSO 

b 12.421091 12.257060 

h 21.721846 22.912299 

t 3.689394 2.779309 

f1(b,h,t) 32.487004  -0.405166 

f2(b,h,t) 0,0 -0.189759 

f3(b,h,t) 0,0 0.098563 

 

 

Fig. 2. fitness value progression in the GA process in example 1. 

 

 

Fig. 3. population diversity over iterations in the GA process in example 1. 
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Fig. 4. PSO convergence history in example 1 

 

 

Fig. 5. fitness value progression in the GA process in example 2 

 

 

Fig. 6. population diversity over iterations in the GA process in example 2 
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Fig. 7. PSO convergence history in example 2 

 

DISCUSSIONS 

In the example 1, the GA generated solutions obtained accurate results for some functions fi(x) in the 

system such as f4(x) and f5(x). However, there is instability in the GA in finding solutions. This is 

different from PSO where the solution tends to stabilize towards a value or the best solution.  

Similarly, in example 2, according to (Luo et al., 2008), a nonlinear system of equations can have 

multiple solutions without considering its physical meaning. The solution obtained using the quasi-

Newton method is h = 22.8949, b = 12.5655 and t = 2.7898, not much different from the solutions 

produced by GA and PSO in this study. GA obtained accurate results in f2(b,h,t) and f3(b,h,t) but the 

results were much different from f1(b,h,t). This suggests that GA's performance in finding solutions is 

less stable than PSO's, which tends to consistently achieve convergent results. As far as speed of 

convergence is concerned, it can be seen from Figure 2-7 that PSO converges faster than GA. 

 

CONCLUSION 

Based on the discussion above, it can be concluded that from the two examples of nonlinear systems 

of equations given, it can be seen that GA tends to be more accurate than PSO. This is attributed to GA's 

ability to explore a wider search space and of course to overcome the local optimum. Nevertheless, in 

terms of speed in achieving convergence, PSO is faster. Perhaps this is because PSO uses simpler 

velocity and position update rules. It can be noted that the performance and stability of both algorithms 

are highly dependent on the exact parameter configuration, as well as the nature and complexity of the 

problem at hand. 
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