

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 8, Number 4, October 2024

DOI : https://doi.org/10.33395/sinkron.v8i4.14052

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

*name of corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 2192

Implementation Docker and Kubernetes

Scaling Using Horizontal Scaler Method for

Wordpress Services

Suryayusra1), Nova Destarina2)*, Edi Surya Negara3), Edi Supratman4), Maria Ulfa5)
1,2,3,4,5) informatics engineering, Universitas Bina Darma Palembang, Indonesia

1)suryayusra@binadarma.ac.id , 2)novadestarina092@gmail.com , 3)e.s.negara@binadarma.ac.id ,
4)edi_supratman@binadarma.ac.id , 5)mu@binadarma.ac.id

Submitted :Sept 5, 2024 | Accepted : Sept 13, 2024 | Published : Oct 3, 2024

Abstract: Container is a technology that has recently been widely used because of

the additional features that are very easy and convenient to use, especially for web

hosting service developers, with Container making it easier for system admins to

manage applications including building, processing and running applications on

Container. With Container the process of creating and using the system will be easier

but along with too many user requests so that the service does not run optimally.

Therefore, the Container must have good scalability and performance. Scalability is

needed for systems that can adjust to the needs of user demand and performance is

needed to maintain the quality of services provided. This research aims to implement

scaling using Docker and Kubernetes in terms of scalability and performance. The

parameters of comparison between Docker and Kubernetes are for scalability,

scaling up and scaling down time and for performance. The method in this research

uses the Action Research methodology, which is a research model that is

simultaneously practiced and theorized. With the initial steps of problem

identification, action planning, action implementation, observation and evaluation.

Based on the results that have been obtained, Docker consumes more CPU &

Memory Usage Resources, namely at 500 Users Kubernetes consumes Resources

with an average of 94.47%-4.70% while in Kubernetes 89.11%-4.50 because in

Kubernetes itself has a complex system, especially special component components

such as APIs, Metrics Server, Kubernetes manager to run the Container. While in

Docker only has Docker Manager and Docker Compose components.

Keywords: Container, Docker, Kubernetes, Load Testing, Scaling.

INTRODUCTION

Docker and Kubernetes have emerged as solutions to address infrastructure scalability. Docker enables the

packaging of applications into containers. Docker emerged as a response to problems arising in the software

development and deployment process. While Docker addressed the problem of packaging and running

applications, Kubernetes was born to address the challenges of Container management at scale. By using

Containers, the need arises to efficiently manage 2 concurrently running Containers (Putri et al., 2021). Containers

are isolated environments that run on top of the same operating system but do not share address space with each

other (Silva et al., 2019).

Kubernetes provides a solution to this problem by providing an open-source platform for Container

application scalability. With Kubernetes, users can manage their applications in a secure, scalable way. Kubernetes

provides a robust platform for scaling Containers (Rina & Ridha, 2021). One of the most widely used Container-

based virtualization today is Docker. Docker is one of the useful tools for running containers. However, managing

containers to create many services and handle many users is a big task for Docker (Sugiyatno & M, 2023). In

Kubernetes, a Container is a Pod the smallest deployment unit that can contain one or more Containers. The Pod

provides an execution environment that includes a shared network namespace, File system, and storage volumes

(Zulfikar, 2022).

The purpose of this research is to compare the performance of the scaling process in Docker and Kubernetes.

In Kubernetes using Horizontal Scaler method while in Docker using the same Horizontal Scaler method. The

comparison parameters between Docker and Kubernetes are Load Testing for scalability, Scaling up and Scaling

down time for performance.

https://doi.org/10.33395/sinkron.v8i4.14052
mailto:suryayusra@binadarma.ac.id
mailto:novadestarina092@gmail.com
mailto:e.s.negara@binadarma.ac.id
mailto:edi_supratman@binadarma.ac.id

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 8, Number 4, October 2024

DOI : https://doi.org/10.33395/sinkron.v8i4.14052

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

*name of corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 2193

LITERATURE REVIEW

Scaling is the main problem in this case. Inadequate resources that are unable to cope with strong changes in

workload over time, in which case the application experiences low performance or too much user demand, in

which case the utilization of resources allocated to the Container is low. Therefore, scaling over time is required

(Subhi et al., 2021). Load Testing is a performance testing technique where system response is measured under

various conditions and loads. This test helps determine how software behaves when multiple users access the

software simultaneously. Scalability is the ability of a Container to handle an increasing number of users.

Scalability can be achieved through existing configurations or by adding Containers, thus allowing new users

access to the application without significant delays (Yedutun et al., 2019). Performance is the result of work that

can be achieved. In the context of information technology, it refers to how well a system or application operates

in terms of responsiveness, speed, efficient use of resources, and ability to handle a given workload (Aruan &

Rahayu, 2023).

Load Testing is a critical approach in measuring and evaluating the performance of an application. In the

context of Load Testing performance analysis. especially when faced with a high workload (Andrianto & Suyatno,

2024). The Central Processing Unit (CPU), often referred to as the processor or the brain of the computer, has the

main function of processing and managing all the calculations and commands that allow the computer to operate.

Since the CPU generates heat during its work process, it is usually equipped with fans and heat sinks to keep the

temperature down (Rivki et al., 2019). Web hosting is a service provided by a web hosting provider that allows

users or others to store and publish websites or web applications on the internet (Yosli, 2021).

The previous research related to comparing the performance of the Scaling process on Kubernetes and Docker

Swarm. In Kubernetes using Horizontal Pod auto scaler method while in Docker Swarm using Scaling method.

The comparison parameters between Kubernetes and Docker Swarm are Load Testing for scalability, Scaling up

and Scaling down time for performance (Firdaus et al., 2020). Further previous research on Comparative Analysis

of Docker Swarm Web Server Performance with Kubernetes Cluster, Before testing was carried out on two Cluster

servers with different orchestration tools. Both Cluster servers are built on Google Cloud Platform with the same

server specifications. Then docker swarm manager is connected to two swarm nodes, Kubernetes Cluster control

plane is connected to two nodes. After that, install Nginx as a web server on the swarm manager and control plane,

and replicated to other nodes. Both Cluster servers are then load tested using the Apache Jmeter application on a

laptop that has been prepared. The measurement data results are organized based on the parameters used in this

study (Prasetyo & Salimin, 2021). The next previous research with the title Implementation of Optimistic

Concurrency Control on E-Commerce Application Systems Based on MicroServices Architecture Using

Kubernetes, Testing is implemented with the Load Testing method. In Load Testing, several parameters need to

be considered. The results obtained are in the form of a comparison of the amount of data. Experiments were

carried out with several trials with different parameters (Ammar Dwi Anwari et al., 2021).

METHOD

The method in this study uses the Action Research methodology, which is a research model that is at the same

time practicing and theorizing, or combining theory and implementing it in practice (Hasan, 2019).

Figure 1. Action Research Methodology

In summary, the stages in Action Research consist of a cycle of problem identification is to identify problems

or challenges related to the scalability of wordpres web hosting services using Docker and Kubernete, action

https://doi.org/10.33395/sinkron.v8i4.14052

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 8, Number 4, October 2024

DOI : https://doi.org/10.33395/sinkron.v8i4.14052

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

*name of corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 2194

planning is to plan steps to implement Scaling on Docker and Kubernetes, action implementation is The planned

steps are then implemented in a production environment using Docker and Kubernetes, and observation and

evaluation of actions Observing system performance after the implementation of Scaling steps. collecting data

related to performance and Scaling on the system for evaluation. This entire cycle is conducted based on the

context and objectives of the action research being conducted.

Some tools and hardware that will be used in the research are the specifications of the hardware used, among

others :

Table 1. Hardware Specifications

Komponen Spesifikasi

Nama Perangkat Laptop Acer Aspire Lite 14

Processor
12th Gen Intel(R) Core(TM) i3-1215U

1.20 GHz

RAM 8 GB memory

HDD 512 GB HDD

 The software to be used includes :

1. Docker Desktop as Software.

2. Docker as Container controller.

3. Kubernetes as Container controller.

4. Metric Server as monitoring in kubernetes.

5. Apache Jmeter as stressing tool for Wordpress web hosting.

RESULT

This section displays the results of the analysis. As explained earlier, the parameters chosen to be measured are

Load Testing for scalability, Scaling up and Scaling down time for performance. The purpose of Load Testing is

to see the scalability of each Container. By looking at the load on CPU & Memory usage with the specified User.

CPU & Memory usage shows what percentage is needed in the process carried out in the experiment.

Figure 2. CPU Usage Load Testing Diagram

Figure 3. Memory Usage Load Testing Diagram

Seen from the picture the average results of Load Testing when generating 150 users consumes CPU &

Memory usage with an average of 26.73%-2.83% while on Kubernetes 24.58%-2.94%. Furthermore, when

generating 300 Users consumes CPU usage with an average of 62.74%-3.32% while in Kubernetes 57.05%-3.87%.

https://doi.org/10.33395/sinkron.v8i4.14052

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 8, Number 4, October 2024

DOI : https://doi.org/10.33395/sinkron.v8i4.14052

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

*name of corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 2195

Furthermore, when 500 users take up CPU usage with an average of 94.47%-4.30% while in Kubernetes 89.11%-

4.50. Because in Kubernetes itself has a complex system, especially special components such as Metric Server,

Kubernetes manager, and kubectl to run the Container. While in Docker only has Docker Manager and Docker

Compose components.

The purpose of scaling up is to see the performance of each Container. By looking at the Container Creating

time and the Container Load Testing time. The purpose of Scaling down is to see the performance of each

Container. By measuring CPU usage when the service is not in use.

Figure 4. Docker built in 0.7s & Kubernetes built in 6s

Creating a Docker Container takes 0.7s (0.7 seconds) while creating a new Kubernetes Pod (Container) on a

node takes 6s (6 seconds).

Figure 5. CPU and Memory utilization in Docker and Kubernetes when services are no longer in use

When the Request Generator finishes generating the User. Pod (Container) or service will return to 0%. and

CPU & Memory Usage of each node will return to normal.

DISCUSSIONS

The results of the analysis of all tests carried out in this final project research research can draw the following

conclusions :

1. Based on the results that have been obtained, Docker consumes more CPU & Memory Usage Resources,

namely at 500 Users Kubernetes consumes Resources with an average of 94.47%-4.70% while in

Kubernetes 89.11%-4.50 because in Kubernetes itself has a complex system, especially special

component components such as API, Metrics Server, Kubernetes manager to run the Container. While in

Docker only has Docker Manager and Docker Compose components.

2. Based on the results that have been obtained Scaling up in Kubernetes is superior because of scaling but

in terms of Restart Docker is faster, namely with an average time of 2.1 seconds while Kubernetes 27

seconds. For Scaling down Docker is favored in terms of removing the Container. Because the removal

is done with an average time of 1.4 seconds. Although Kubernetes looks longer in deleting but in

Kubernetes there is a Container deletion with an average time of 11 seconds. Based on the data above,

Kubernetes is more suitable for companies that deal with unpredictable users such as e-commerce, namely

Lazada, Shopee, Tokopedia, Olx, Amazon. While Docker is more suitable for companies that deal with

predictable users such as internal companies with a certain number of employees.

CONCLUSION

This research certainly still has shortcomings and can be explored further. Therefore, the author provides

several suggestions, namely :

1. The scaling process can be improved by using other methods to utilize CPU and memory usage metrics,

so that the scaling process can be more effective.

https://doi.org/10.33395/sinkron.v8i4.14052

Sinkron : Jurnal dan Penelitian Teknik Informatika
Volume 8, Number 4, October 2024

DOI : https://doi.org/10.33395/sinkron.v8i4.14052

e-ISSN : 2541-2019
 p-ISSN : 2541-044X

*name of corresponding author

This is anCreative Commons License This work is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License. 2196

2. Comparing Containers by combining the Scaling process with other processes so as to get which

Container is the best

REFERENCES

Ammar Dwi Anwari, Rizky Januar Akbar, & Royyana Muslim Ijtihadie. (2021). Implementasi Optimistic

Concurrency Control Pada Sistem Aplikasi E-Commerce Berdasarkan Arsitektur Microservices

Menggunakan Kubernetes. Jurnal Teknik Its , 10(2).

Andrianto, L. D., & Suyatno, D. F. (2024). Analisis Performa Load Testing Antara Mysql Dan Nosql Mongodb

Pada RestAPI Nodejs Menggunakan Postman. Journal of Emerging Information System and Business

Intelligence (JEISBI), 5(1), 18–26.

https://ejournal.unesa.ac.id/index.php/JEISBI/article/view/58157%0Ahttps://ejournal.unesa.ac.id

Aruan, M. C., & Rahayu, W. (2023). Analisis Performa Algoritma Kompresi Data dalam Penyimpanan dan

Transfer Data. LANCAH: Jurnal Inovasi Dan Tren, 1(2), 228–232.

Firdaus, B. A., Suryani, V., & Karimah, S. A. (2020). Analisis Performansi Proses Scaling pada Kubernetes dan

Docker Swarm Menggunakan Metode Horizontal Scaler. E-Proceeding of Engineering, 7(2), 7793–7808.

Hasan. (2019). Action Research : Desain Penelitian Integratif untuk Mengatasi Permasalahan Masyarakat. AKSES:

Jurnal Ekonomi Dan Bisnis, 4(8), 12.

https://publikasiilmiah.unwahas.ac.id/index.php/AKSES/article/view/523

Prasetyo, S. E., & Salimin, Y. (2021). Analisis Perbandingan Performa Web Server Docker Swarm dengan

Kubernetes Cluster. CoMBInES - Conference on Management, Business, Innovation, Education and Social

Sciences, 1(1), 825–833. https://journal.uib.ac.id/index.php/combines/article/view/4512

Putri, S. N., Arif, M., & Ridha, F. (2021). Implementasi Clustered Container Dengan Docker Sarm. 201–208.

Rina, N. K. S., & Ridha, M. A. F. (2021). The Implementasi Kubernetes Cluster Menggunakan KVM. ABEC

Indonesia, 209–217.

https://abecindonesia.org/proceeding/index.php/abec/article/view/151%0Ahttps://abecindonesia.org/procee

ding/index.php/abec/article/download/151/149

Rivki, M., Bachtiar, A. M., Informatika, T., Teknik, F., & Indonesia, U. K. (2019). No 主観的健康感を中心と
した在宅高齢者における 健康関連指標に関する共分散構造分析Title. 112.

Silva, V. G. da, Kirikova, M., & Alksnis, G. (2019). Containers for Virtualization: An Overview. Applied

Computer Systems, 23(1), 21–27. https://doi.org/10.2478/acss-2018-0003

Subhi, R., Ruslianto, I., Ristian, U., Rekayasa, J., Komputer, S., Mipa, F., Tanjungpura, U., Prof, J., Hadari, H., &

Pontianak, N. (2021). Implementasi Teknik Scaling Pada Sistem Manajemen Balancing Server Berbasis

Website. Jurnal Komputer Dan Aplikasi, 09(02), 316–326.

Sugiyatno, & M, I. (2023). Analisis Perbandingan Performasi Respon Waktu Web Server dan Failover Antara

Kubernetes Dan Docker Swarm pada Container Orchestration. Jurnal Informatika Komputer, Bisnis Dan

Manajemen, 21(3), 43–53. https://doi.org/10.61805/fahma.v21i3.9

Yedutun, K., Noertjahyana, A., & Novianus Palit, H. (2019). Implementasi Container Kubernetes untuk

Mendukung Scalability. Jurnal Infra, 7(2), 1–5.

Yosli, R. (2021). Meningkatkan Kapasitas Hosting, Mengelola Content Management System Untuk Kenyamanan

Memakai Website Berbayar. JAVIT : Jurnal Vokasi Informatika, 31–37.

https://doi.org/10.24036/javit.v1i2.6

Zulfikar, A. (2022). Penggunaan Docker Dan Kubernetes Pipeline Dalam Pengembangan Aplikasi Prediksi Cacat

Perangkat Lunak Melalui Pendekatan Mlops.

https://doi.org/10.33395/sinkron.v8i4.14052

