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Abstract: Road damage is a serious issue that can impede traffic and increase the 

risk of accidents in any area. Fast and accurate detection and classification of road 

damage are crucial for efficient maintenance and repair. Considering the ease of 

access, the implementation of this detection can be done using a mobile application. 

This study aims to compare the performance of two object detection algorithms, 

YOLOv8 and SSD-MobileNet, in detecting and classifying road damage in mobile 

application. Evaluation is conducted using accuracy, speed, and memory utilization, 

and classification of road damage into six categories namely block cracks, alligator 

cracks, transverse cracks, edge cracks, patches, and potholes using a confusion 

matrix. The results show that YOLOv8 has overall accuracy 86.4%, speed 0.5 ms, 

and consumes 0.41 GB of RAM. SSD-MobileNet shows an overall accuracy of 

91.1%, speed 0.7 ms, and consumes 0.14 GB of RAM. The comparison indicates 

that YOLOv8 excels in detection speed, while SSD-MobileNet is more higher 

accuracy and efficient in memory. This study is limited to a performance 

measurement approach for YOLOv8 and SSD-MobileNet algorithms in a mobile-

based road defect detection context. Its contribution lies in the trade-off between 

accuracy, speed, and the memory required to implement the models in limited 

devices. In future research is recommended to explore model with pruning to reduce 

memory usage.  

 

Keywords: YOLOv8; SSD-MobileNet; object detection; classification; road 

damage. 

 

INTRODUCTION 

Road defects pose a significant problem, impeding traffic flow and elevating accident risks across various 

regions. Rapid and accurate detection and classification of these defects are crucial for efficient maintenance and 

repair. Damaged road infrastructure not only inconveniences road users but can also negatively impact a region's 

economy through increased repair costs and decreased productivity due to travel delays (Toyip Setiawan & 

Winayati, 2021). Therefore, identifying solutions for quick and accurate road defect identification is vital to 

minimize these adverse effects. 

In recent years, the advancements in Artificial Intelligence (AI)-based technology enables automatic 

detection and classification of road defects by leveraging machine learning algorithms to analyze road images and 

identify defect types. Various algorithms can be employed for object detection in images, including RCNN, Faster 

RCNN, YOLO, and SSD. These algorithms are generally categorized into two types: one-stage and two-stage 

detectors (Carranza-García et al., 2021). One-stage detectors, such as YOLO and SSD, are designed for speed and 

efficiency, while two-stage detectors, like RCNN and Faster RCNN, prioritize detection accuracy, albeit at a 

slower speed (Sirisha et al., 2023). 

Several previous studies have explored the application of AI technology for road defect detection. For 

instance, Zhang et al. (2018) utilized YOLOv3 for road defect detection and reported promising results in terms 

of detection speed. However, this study focused solely on one algorithm without comparing it to others. Another 

study by Liu et al. (2019) employed SSDs for road defect detection and found that SSDs could detect defects with 

good accuracy, but it did not address memory usage efficiency on mobile devices. In a more recent study, Chen et 

al. (2020) compared several object detection algorithms for road defect detection applications but did not include 

the latest versions of YOLO or SSD-MobileNet in their comparison. 
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Despite extensive research in this area, a significant gap remains in the literature regarding a direct and 

comprehensive comparison between the YOLOv8 and SSD-MobileNet algorithms specifically within the context 

of mobile applications for road defect detection. The mobile applications have limitations in terms of memory, 

computing power, and energy requirements. Previous studies have often focused on single algorithms or older 

versions, overlooking the advancements and unique challenges posed by mobile deployment, particularly 

concerning resource efficiency. For example, while some research has highlighted YOLO's speed (Zhang et al., 

2018) and SSD's accuracy (Liu et al., 2019), a direct comparative analysis that considers the latest iterations of 

these models alongside their resource footprint on mobile devices is lacking. Furthermore, existing comparisons 

often omit the crucial aspect of memory usage, which is a critical constraint for mobile implementations (Chen et 

al., 2020). 

This study aims to address this critical gap by conducting a comprehensive analysis of the performance of 

both YOLOv8 and SSD-MobileNet. The novelty of this research lies in its direct comparative evaluation of these 

two state-of-the-art object detection algorithms specifically optimized for mobile environments, considering not 

only detection accuracy and speed but also crucial factors like RAM usage and application storage size. This 

research provides a unique and timely contribution by offering practical insights into the trade-offs between speed, 

accuracy, and resource efficiency for road defect detection on mobile platforms, thereby filling a vital void in the 

current literature. This research will make an important contribution to the field of AI technology for road defect 

detection and is expected to provide better solutions for more efficient and effective road infrastructure 

maintenance. 

 

LITERATURE REVIEW 

YOLO (You Only Look Once) and SSD (Single Shot MultiBox Detector), which perform detection and 

classification in a single forward pass, offering superior speed and computational efficiency, though sometimes 

with a trade-off in accuracy, especially for small or overlapping objects (Carranza-García et al., 2021; Sirisha et 

al., 2023). 

Prior studies have demonstrated the applicability of YOLO and SSD for road defect detection, highlighting 

their respective strengths. Zhang et al. (2018), for instance, utilized YOLOv3 to effectively detect various road 

defects, emphasizing its impressive speed for real-time applications. However, this work primarily focused on 

speed metrics without a detailed analysis of accuracy trade-offs or the feasibility of deployment on resource-

limited mobile devices. Similarly, Liu et al. (2019) applied SSD for detecting cracks and potholes, reporting good 

accuracy. Yet, their research did not extensively evaluate the computational efficiency or memory footprint, which 

are paramount considerations for mobile-based solutions. While broader comparisons, such as Chen et al. (2020), 

have explored the performance of Faster RCNN, YOLOv3, and SSD, they often did not include the very latest 

iterations of these algorithms or specialized lightweight variants, leaving a gap in understanding their performance 

in modern, mobile-centric contexts. 

This collective body of work underscores an inherent tension: achieving high detection accuracy often comes 

at the cost of computational efficiency, and vice-versa. While two-stage detectors generally offer superior 

accuracy, their computational demands often render them impractical for real-time mobile deployment. 

Conversely, one-stage detectors are more suitable for mobile devices due to their speed, but historical versions 

might exhibit reduced accuracy, particularly for subtle or fragmented road damage. 

In response to these challenges, continuous advancements have led to newer models designed to better 

balance these trade-offs, making them more viable for real-world mobile applications. YOLOv8, a recent iteration 

released in 2023, incorporates significant architectural improvements aimed at enhancing both accuracy and 

efficiency (Lou et al., 2023; Drantantiyas et al., 2023). These advancements include a mosaic augmentation 

technique employed during training to increase data diversity and improve generalization, an innovative anchor-

free detection head that simplifies the model's structure and boosts its performance, and an improved backbone 

network for more robust feature extraction. Concurrently, SSD-MobileNet integrates the efficient Single Shot 

MultiBox Detector (SSD) framework with the lightweight MobileNet backbone. MobileNet's architecture, 

characterized by its depthwise separable convolutions, significantly reduces the number of parameters and 

computational operations, thereby curtailing memory and computational demands. This design makes SSD-

MobileNet particularly well-suited for deployment on resource-constrained mobile devices where efficiency is 

paramount (Falah et al., 2021; Pakpahan & Dewi, 2021). Despite the promising potential of both YOLOv8 and 

SSD-MobileNet for road defect detection, there has been limited direct comparative research evaluating these two 

specific, state-of-the-art models within the crucial context of mobile application deployment. 

The existing literature therefore highlights several important gaps. Previous studies have often concentrated 

on individual algorithms rather than conducting comprehensive comparative analyses, and there is a notable 

scarcity of exploration into newer models like YOLOv8 and SSD-MobileNet, especially when considering the 

stringent memory and processing limitations inherent to mobile environments. Furthermore, most research has 

tended to emphasize accuracy or speed in isolation, failing to holistically evaluate all three essential aspects: 
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detection accuracy, processing speed, and memory usage efficiency, which are all critical for practical mobile 

deployment. 

This study directly addresses these identified gaps by undertaking a comprehensive comparative analysis of 

YOLOv8 and SSD-MobileNet specifically tailored for real-time road defect detection in mobile applications. The 

research will rigorously evaluate both models across all crucial performance metrics: detection accuracy for 

various types of road defects, detection speed to confirm suitability for real-time operational use, and memory and 

computational efficiency to ensure practical deployment on mobile devices. By integrating insights from prior 

research and diligently tackling these identified deficiencies, this study aims to provide clear guidance for 

practitioners and researchers in selecting the most appropriate AI model for the development of efficient, accurate, 

and practical mobile-based road defect detection systems. Recognizing the shortcomings of existing literature, this 

study aims to fill these gaps by providing a thorough comparative analysis of advanced, mobile-friendly object 

detection models, ensuring a holistic evaluation of accuracy, speed, and memory usage, which is crucial for real-

world mobile deployment of road defect detection systems. 

  

METHOD 

In this research, methodology section discusses in detail start from the dataset collecting. After obtaining the 

image data, the next step is to extend it through augmentation and design the YOLOv8 and SSD-MobileNet 

algorithm models. Next, the models were tested against the classified road defect dataset. Evaluation is done by 

utilizing precision, recall, and mean average precision (mAP) metrics to evaluate the approach used. The research 

flow is presented in Figure 1. 

  

 

Fig. 1 Research design 

 

Data Collection 

Sub In this research, a dataset of road defect images consisting of six types of defects is required: box cracks, 

crocodile skin cracks, transverse cracks, edge cracks, patches, and potholes. The data was collected from the free 

online platform roboflow, which provides high quality datasets. Each type of damage has 300 images, so the total 

dataset consists of 1800 images. 

Preprocessing Data 

Once the data is collected, the next step is image preprocessing. At this stage, data augmentation is performed 

to increase the variety of training data and prevent overfitting. The augmentation techniques used include rotation, 

cropping, noise addition, lighting changes, and horizontal flip. This process aims to make the model more robust 

to various image conditions that may be encountered in the field. 

The processed images are then normalized to ensure consistency of input into the model. Normalization is 

done by rescaling the image pixel values so that they are within a certain range, such as 0 to 1. This process is 

important to improve the model's performance in detecting road damage. 

The dataset was then divided into two main parts: training data and testing data. This is done in a ratio of 

80:20, where 80% of the data is used to train the model and the remaining 20% is used to test the model's 

performance. This division aims to ensure that the model can be accurately evaluated based on data that has never 

been seen before. 

Algorithm Implementation 

After the data collection and processing process is complete, the next step is the implementation of the 

YOLOv8 and SSD-MobileNet algorithms. These two algorithms were chosen because they have the advantage of 

detecting objects in real-time and are efficient in memory usage. 

https://doi.org/10.33395/sinkron.v9i3.15008
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Fig. 2 YOLOv8 and SSD-MobileNet Algorithm Implementation Design 

The object detection process using YOLOv8 involves several structured stages. First, image pre-processing 

is performed, including normalization and resizing, to prepare the input for the model. Then, utilizing a backbone 

network such as Darknet-53, important features are extracted from the images. Prediction of object location and 

class is then performed using convolution layers, followed by the application of non-max suppression techniques 

to reduce overlap and select the most relevant bounding box. After that, the post-processing step involves adding 

class labels and bounding box generation to the detected objects. The detection results are then interpreted and the 

performance of the model is evaluated by comparing the detection results with the ground truth data using relevant 

evaluation metrics such as precision and recall. Through this series of well-coordinated stages, YOLOv8 is able 

to provide object detection with high accuracy and optimal inference speed, making it one of the popular choices 

in image processing and computer vision. 

SSD-MobileNet uses a structured approach in detecting objects in images. The first stage involves feature 

extraction using MobileNet, which is a lightweight and efficient convolutional neural network architecture. With 

MobileNet as the backbone, the model is able to retrieve features at various scales and resolutions through 

appropriate convolution layers. Furthermore, using SSD as its object detection method, SSD-MobileNet 

simultaneously predicts the bounding box and class score for each object in the image. This detection process is 

followed by the application of the Non-maximum Suppression (NMS) algorithm to overcome duplicate detection 

and select the most relevant bounding box. Finally, the model performs object classification by associating each 

bounding box with a class label based on the resulting class score. Through this series of steps, SSD-MobileNet is 

able to quickly and efficiently detect objects in images with good accuracy. 

Table 1.  Configuration Model of Yolov8 

Parameter Configuration Description 

Optimizer SGD (Stochastic Gradient Descent) 

Learning Rate (Initial) 0.01 

Epochs 100 

Batch Size 8, 16, 32, 64 (Varied in hyperparameter tuning experiments) 

Loss Function Combined loss 

Table 1 outlines the specific parameters utilized for training the YOLOv8 model in this study. The model 

employed was the YOLOv8 architecture, specifically initiating from a pre-trained yolov8n.pt base, a choice often 

made for its balanced performance, prioritizing both detection speed and accuracy for various applications (Lou 

et al., 2023). Training was conducted using the SGD optimizer, with an initial learning rate of 0.01 and a cosine 

annealing schedule, a common strategy to optimize convergence and prevent overfitting. The model was trained 

for 100 epochs with a batch size of 16, and both these parameters were subject to further tuning to achieve optimal 

performance, with the training performed on a Quadro P4000 GPU. 

Table 2. Configuration Model of SSD-MobileNet 

Parameter Configuration Description 

Optimizer Adam 

Learning Rate (Initial) 1 

Epochs 100 

https://doi.org/10.33395/sinkron.v9i3.15008
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Batch Size 8, 16, 32, 64 (Varied in hyperparameter tuning experiments) 

Loss Function MultiBox Loss 

Num_Steps 20,000 

 

Table 2 details the specific configuration used for the SSD-MobileNet model. This model integrates the 

Single Shot MultiBox Detector (SSD) head with a MobileNetV2 backbone, which was pre-trained on the COCO 

dataset. This combination is particularly favored for its lightweight design and efficiency, making it highly suitable 

for deployment on resource-constrained mobile devices (Falah et al., 2021; Pakpahan & Dewi, 2021). The model 

was trained using the Adam optimizer with an initial learning rate of 0.001, employing a step decay strategy for 

learning rate adjustment. 

The training process for SSD-MobileNet involved extensive data augmentation techniques, including random 

cropping, horizontal flipping, and various photometric distortions to ensure the model's adaptability to varied 

image conditions. Training spanned 100 epochs with a batch size of 32, with the Num_Steps parameter (common 

in TensorFlow-based training) also being a focus for hyperparameter tuning. The efficient design and specific 

training parameters highlight its suitability for scenarios where memory and computational power are primary 

considerations. 

Evaluation Method 

The evaluation begins with the calculation of precision, recall, and mean average precision (mAP) for both 

YOLOv8 and SSD-MobileNet algorithms. Precision measures the proportion of true positive detections among all 

positive detections made by the model. It indicates how many of the detected road damages are actual damages. 

Recall measures the proportion of true positive detections among all actual road damages in the dataset, indicating 

the model's ability to detect all possible damages. Mean Average Precision (mAP) is used to summarize the 

precision-recall curve and is calculated by taking the average precision across various recall levels. The mAP@0.5 

metric is specifically used in this study, which considers a detection correct if the Intersection over Union (IoU) 

between the predicted bounding box and the ground truth is greater than 0.5. 

The dataset is split into training and testing sets with a ratio of 80:20. The training set, comprising 80% of 

the dataset, is used to train the models, while the remaining 20% is reserved for testing and evaluation. Ground 

truth labels, which provide the actual locations and classes of road damages, are used as a benchmark to compare 

against the predictions made by the models. The evaluation metrics are computed by comparing these ground truth 

labels with the model predictions on the test set. 

The inference speed of the models is a critical factor, especially for real-time applications. Inference speed is 

measured as the time taken to process one image and is expressed in milliseconds (ms) per frame. This metric is 

crucial for applications where quick decision-making is necessary, such as real-time road damage detection on 

mobile devices. 

Memory usage is evaluated in terms of both storage and RAM consumption. The storage usage is measured 

before and after converting the models to TensorFlow Lite format, which is necessary for deployment on mobile 

devices. The TensorFlow Lite conversion process often reduces the model size significantly, making it more 

suitable for mobile deployment. RAM usage is measured to determine the amount of memory required during the 

inference process, which impacts the performance of mobile devices with limited resources. 

The final step in the evaluation involves a comparative analysis of both algorithms based on the collected 

metrics. The accuracy, speed, and memory usage efficiency of YOLOv8 and SSD-MobileNet are compared to 

determine which algorithm offers the best balance of performance. 

RESULT  

Road Damage Detection Results with YOLOv8 Algorithm 

The YOLOv8 object detection model is conducted by using hyperparameters including batch size. The 

following table is the experimental results in forming a model for detecting and classifying road damage. 

Table 3 Experiment Results 

 

Model Set Epoch Batch_Size Precision Recall mAP@.5 

Yolov8 100 8 0.821 0.781 0.732 

100 16 0.851 0.728 0.789 

100 32 0.878 0.731 0.793 

100 64 0.907 0.821 0.864 
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Table 3 presents the performance of the YOLOv8 model across different batch sizes, while keeping the 

number of epochs constant at 100. The key metrics evaluated are Precision, Recall, and mean Average Precision 

at an Intersection over Union (IoU) threshold of 0.5 (mAP@.5). This experiment aims to illustrate how batch size 

influences the model's ability to accurately detect and classify objects. 

As the batch size increases from 8 to 64, a clear trend of improving performance is observed. Precision 

consistently rises from 0.821 to 0.907, indicating that a larger batch size leads to fewer false positives. Similarly, 

mAP@.5, a comprehensive measure of object detection accuracy, shows a significant increase from 0.732 to 0.864. 

This suggests that with more data processed in each training iteration, the model learns more robust features, 

leading to better overall detection quality. 

Interestingly, Recall also demonstrates an improvement, albeit with a slight dip at batch size 16, ultimately 

increasing from 0.781 to 0.821 at batch size 64. The most optimal performance, balancing all metrics, appears to 

be achieved at a batch size of 64, where YOLOv8 yielded the highest Precision (0.907), Recall (0.821), and 

mAP@.5 (0.864).  

 

Fig. 3 YOLOv8 Algorithm Training Dataset Evaluation Results 

Figure 3 shows the training data, shows that the model experienced a significant performance improvement 

over 100 training epochs. The train/box_loss, train/cls_loss, and train/dfl_loss graphs show a consistent decrease 

in loss values from the beginning to the end of training. This decrease indicates that the model is improving at 

determining object bounding boxes, classifying objects, and capturing local object features over time. 

 

 
Fig. 4 Detection Result of YOLOv8 Algorithm 

The Figure 4 shows the results of road damage detection by the YOLOv8 algorithm, displaying various 

damage types such as Side Cracks, Potholes, Crocodile Skin Cracks, Longitudinal Cracks, and Patches with 

https://doi.org/10.33395/sinkron.v9i3.15008
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colored bounding boxes and corresponding labels. YOLOv8 successfully detects defects in various lighting 

conditions and viewing angles, e.g. red box for potholes and yellow box for elongated cracks. These detections 

indicate YOLOv8's ability to identify road defects with high accuracy, showing great potential for road 

infrastructure monitoring and maintenance.  

Road Damage Detection with SSD-MobileNet Algorithm 

The SSD-MobileNet model also showed good evaluation results with precision between 0.736 to 0.916, recall 

between 0.768 to 0.942, and mAP@0.5 between 0.717 to 0.914. The total accuracy achieved was 91.1%. These 

results show that the SSD-MobileNet model has a higher performance in detecting road defects than YOLOv8. 

The average inference time for SSD-MobileNet is 60 ms per image, which also enables real-time detection. 

Table 4 Experiment Results with Changing Num_Steps (Batch-Size=16) 

 

 

 

Table 4 presents the performance metrics for a model (likely SSD-MobileNet, given the parameter 

"Num_Steps") when varying the number of training steps while keeping the batch size constant at 16. The metrics 

evaluated are Precision, Recall, and mAP@.5. This experiment aims to illustrate the impact of the total training 

iterations on the model's accuracy. The results clearly indicate that increasing the number of training steps 

significantly improves the model's performance across all metrics. As "Num_Steps" increases from 10,000 to 

50,000, Precision rises from 0.736 to 0.916, Recall improves from 0.768 to 0.942, and mAP@.5 sees a substantial 

increase from 0.717 to 0.914. This strong positive correlation demonstrates that longer training, up to 50,000 steps, 

allows the model to learn more complex patterns and features from the dataset, leading to superior object detection 

capabilities. 

Table 5 Experiment Results with Changing Num_Steps (Num_Steps=20000) 

Batch-Size Precision Recall mAP@.5 

8 0.857 0.874 0.742 

16 0.864 0.898 0.816 

32 0.871 0.915 0,864 

64 0.891 0.908 0.851 

Table 5 show that increasing the Batch-Size from 8 to 64 provides an improvement in Precision and Recall 

values, but the best mAP@.5 value is achieved at Batch-Size 32. This suggests that there is an optimal point where 

increasing the Batch-Size no longer provides a significant improvement in model performance. 

 

Fig. 5 SSD-MobileNet Training Loss Graph 

Num_Steps Precision Recall mAP@.5 

10000 0.736 0.768 0.717 

30000 0.864 0.898 0.816 

50000 0.916 0.942 0.914 
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Figure. 5  show the loss graphs that occurred during training of the SSD-MobileNet model. The loss graph 

illustrates the model's performance during training. The loss graph measures how well or poorly the model's 

predictions compare to the actual values. Classification loss and localization loss both show significant decreases, 

indicating improvements in the model's accuracy and precision. Regularization loss initially increased and then 

decreased, helping to avoid overfitting. Total loss, the combination of all three metrics, also decreased consistently, 

reflecting improvements in the model's overall performance. This graph indicates that the SSD-MobileNet model 

is improving at classifying and detecting objects while maintaining generalization, making it effective for road 

damage detection. 

 

Fig. 6 Detection Results Using SSD-MobileNet Algorithm 

Figure 6 shows the results of the pothole detection by SSD-MobileNet. The image shows the detection of 

potholes with 91% confidence. The SSD-MobileNet demonstrated good detection capabilities under varying 

surface and lighting conditions, providing clear visual information on the location and size of the defect. These 

results reflect the effectiveness of SSD-MobileNet in road maintenance, detecting defects with considerable 

precision, aiding early identification and efficient repair planning. 

Comparison of Algoritma Performance 

A performance comparison of the YOLOv8 and SSD-MobileNet algorithms is conducted based on the 

evaluation results which provide important insights into the performance of both models in key aspects such as 

accuracy, speed, and memory usage. YOLOv8 showed slightly lower accuracy with 86.4% compared to 91.1% of 

SSD-MobileNet having a higher accuracy rate, making it more effective in road defect detection. YOLOv8 excels 

in terms of detection speed with faster inference time, while SSD-MobileNet shows higher total accuracy and 

better memory usage efficiency. The implementation of YOLOv8 in the mobile application requires 136 MB of 

storage and 0.41 GB of RAM, while SSD-MobileNet requires 18.8 MB of storage and 0.14 GB of RAM. This 

shows that SSD-MobileNet is more suitable to be implemented on mobile devices with varying specifications. 

Table 6 Comparison of the Two Algorithms from the Constructed Model 

Indication YOLOv8 SSD-MobileNet 

Accuracy 86.4% 91.1% 

Model Speed 0.5 ms 0.7 ms 

Storage Usage (Mobile Application) 136 MB 18.8 MB 

RAM Usage (Mobile App) 0.41 GB 0.14 GB 

Based on Table 6 of this comparison, it is recommended to use SSD-MobileNet for the implementation of 

road defect detection in mobile applications due to its better efficiency. SSD-MobileNet demonstrates superior 

performance in terms of memory usage and storage requirements, making it an ideal choice for mobile devices 

with limited resources. The algorithm requires significantly less storage space and RAM, which is crucial for 

maintaining the performance and battery life of mobile devices. With SSD-MobileNet, the application can run 

smoothly without overburdening the device, ensuring a seamless user experience. Additionally, the high precision 

and recall rates achieved by SSD-MobileNet indicate that it can reliably detect various types of road defects, 

making it a robust solution for real-world scenarios. 
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Fig. 7 Bar Chart Result Model 

Figure 7 compares the performance of two object detection models, YOLOv8 and SSD-MobileNet, across 

four metrics: accuracy, model speed, storage usage, and RAM usage in a mobile application. SSD-MobileNet 

demonstrates higher accuracy (91.1%) than YOLOv8 (86.4%) but is slightly slower in model speed (0.7 ms vs. 

0.5 ms). In terms of resource efficiency, SSD-MobileNet significantly outperforms YOLOv8, requiring much less 

storage (18.8 MB vs. 136 MB) and RAM (0.14 GB vs. 0.41 GB). Overall, SSD-MobileNet proves to be a more 

suitable choice for mobile applications due to its balance of high accuracy and efficient resource consumption. 

DISCUSSIONS 

 This section discusses and interprets the presented results, compares them to previous research, and 

highlights key findings. We also provide technical justifications for the observed performance differences and 

suggest potential avenues for future research. 

First, SSD-MobileNet demonstrated higher accuracy (91.1%) compared to YOLOv8 (86.4%). This confirms 

SSD-MobileNet’s advantage in classifying diverse road defects, especially box cracking and transverse cracking. 

Its robust performance in defect classification makes it a strong candidate for applications where precise 

identification of various crack types is critical 

Second, YOLOv8 had a faster detection speed (0.5 ms) than SSD-MobileNet (0.7 ms). This aligns with 

YOLO’s architecture as a one-stage detector optimized for real-time performance. The superior speed of YOLOv8 

can be attributed to its anchor-free and single-head prediction architecture. Unlike multi-stage detectors or those 

relying on anchor boxes, YOLOv8 directly predicts bounding boxes and class probabilities for each grid cell, 

streamlining the detection process and significantly reducing computational overhead. This design makes it highly 

suitable for applications requiring immediate feedback, such as live video analysis. Conversely, SSD-MobileNet, 

while highly accurate, uses anchor boxes, which contributes to its slightly longer processing time compared to 

YOLOv8's anchor-free approach. 

Third, SSD-MobileNet significantly outperformed YOLOv8 in memory and storage efficiency, requiring less 

RAM (0.14 GB vs 0.41 GB) and a smaller application storage size (18.8 MB vs 136 MB). These findings are 

consistent with research highlighting MobileNet’s lightweight design for mobile deployment. The remarkable 

efficiency of SSD-MobileNet is primarily due to the depthwise separable convolutions employed in its MobileNet 

backbone. This architectural innovation replaces standard convolutions with a two-step process: a depthwise 

convolution that applies a single filter per input channel, followed by a pointwise convolution (1×1) that combines 

the outputs of the depthwise convolution. This approach drastically reduces the number of parameters and 

computational operations, leading to a much smaller model footprint and lower memory consumption, making it 

ideal for resource-constrained mobile devices. 

Moreover, experiments showed that increasing Epochs or Batch Size improved model performance to a point, 

but beyond certain thresholds, improvements were marginal. For SSD-MobileNet, Num_Steps had a large impact 

on precision and recall, showing the importance of careful hyperparameter tuning. These findings underscore the 

need for meticulous optimization during the training phase to maximize model effectiveness without incurring 

unnecessary computational costs. 
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Overall, the choice between these algorithms depends on specific application needs. For applications 

prioritizing resource efficiency and high accuracy on mobile devices, SSD-MobileNet is more suitable. For 

scenarios demanding real-time speed where resources are less constrained, YOLOv8 may be preferred. 

Future Development 

These results contribute to understanding how modern object detection models like YOLOv8 and SSD-

MobileNet perform under real-world road damage detection scenarios, offering practical insights for developers 

and researchers aiming to implement AI in mobile road inspection tools. Looking ahead, potential future 

developments should focus on enhancing the algorithms themselves. This includes exploring advanced 

quantization techniques for both YOLOv8 and SSD-MobileNet to further reduce model size and improve inference 

speed on mobile devices without significant loss in accuracy. Additionally, investigating neural architecture search 

(NAS) methods could lead to the discovery of even more optimized and lightweight architectures specifically 

tailored for road defect detection on constrained mobile hardware. Future research could also involve developing 

hybrid models that combine the strengths of both one-stage (speed) and two-stage (accuracy) approaches, or 

integrating attention mechanisms into current architectures to improve their ability to focus on subtle defect 

features. Furthermore, exploring domain adaptation techniques would be crucial to ensure these models maintain 

high performance across diverse road conditions, lighting, and environmental factors, making them more robust 

for real-world deployment. 

CONCLUSION 

This study aims to compare the performance of two object detection algorithms, namely YOLOv8 and SSD-

MobileNet, in detecting road defects. Based on the results obtained, both algorithms show good ability to detect 

various types of road defects with high accuracy. The YOLOv8 model shows an advantage in detection speed with 

an average inference time of 0.5 ms per frame, which enables real-time detection. However, there are limitations 

to YOLOv8, especially in terms of larger memory usage, which requires 136 MB of storage and 0.41 GB of RAM, 

making it more suitable for devices with a large enough memory capacity. On the other hand, SSD-MobileNet 

showed higher total accuracy with a mAP@0.5 value of 91.1%, compared to 86.4% for YOLOv8. In addition, 

SSD-MobileNet is more efficient in memory usage, requiring 18.8 MB of storage and 0.14 GB of RAM. Although 

the inference time of SSD-MobileNet is slightly slower at 0.7 ms per frame, the efficient use of memory and 

storage makes it more ideal for implementation on resource-constrained mobile devices. Although the results of 

this study are promising, there are some limitations that need to be considered. One of the main limitations is the 

detection capability of the model which tends to highlight the class with the highest confidence score. This causes 

difficulties in detecting more than two classes simultaneously. In addition, the process of labeling the datasets 

directly based on their respective classes can affect the detection results. For future research, it is recommended to 

improve the dataset labeling process in order to detect more than two classes more accurately. In addition, it is 

necessary to test on larger and more complex datasets to improve the accuracy and efficiency of both algorithms.  

Thus, this research is expected to make a significant contribution to road infrastructure maintenance and 

repair efforts, as well as a reference for the development of road damage detection technology in the future. The 

results of this research also open up opportunities for further research in optimizing the use of object detection 

algorithms in various contexts and applications. 
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