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Abstract: Heart disease is a leading cause of global mortality, making accurate 

predictive models a clinical priority. While Multilayer Perceptron (MLP) models 

offer significant potential, their application is hindered by challenges in optimization, 

data imbalance, and interpretability. This systematic literature review aims to 

synthesize current research on MLP model optimization for heart disease prediction, 

focusing on strategies for handling class imbalance and achieving model 

transparency with SHapley Additive exPlanations (SHAP). Following PRISMA 

guidelines, a structured search was conducted across major scientific databases, 

including Google Scholar and IEEE Xplore. Using PICOS criteria for study 

selection, 30 peer-reviewed articles were chosen for in-depth analysis. The synthesis 

reveals two key findings: first, a clear trend towards sophisticated optimization using 

complex ensemble models and automated hyperparameter tuning; and second, the 

establishment of the Synthetic Minority Over-sampling Technique (SMOTE) as the 

dominant data-level solution for class imbalance. Furthermore, the application of 

SHAP successfully validated models by consistently identifying known clinical risk 

factors like age and chest pain type. This review concludes that while progress is 

significant, critical gaps remain. Practically, these findings can guide practitioners in 

developing more robust models. We recommend that future research prioritize direct 

comparative studies of imbalance techniques and focus on validating models with 

large-scale, real-world clinical data to ensure the development of trustworthy and 

generalizable predictive systems. 

 

Keywords: Class Imbalance; Heart Disease Prediction; Multilayer Perceptron; 

SHAP; Systematic Literature Review 

 

INTRODUCTION 

Heart disease remains the foremost global health challenge, consistently ranking as the leading cause of death 

worldwide, which underscores the urgent need for effective predictive strategies to reduce mortality and improve 

patient outcomes (Ahmed, 2024; Ahsan, 2022; Katarya, 2020). In response, machine learning (ML), particularly 

the Multilayer Perceptron (MLP), has emerged as a crucial technology. By processing complex medical datasets, 

MLP models can identify hidden patterns, enabling more personalized risk assessments and serving as powerful 

clinical decision support tools that help transform healthcare from a reactive to a proactive system (Bhowmik, 

2024; Rojek, 2024; Saboor, 2022; Wang, 2021). The development of these models is critical, as traditional 

diagnostic methods are often costly and may fail to capture the subtle, non-linear interactions between clinical and 

lifestyle factors, leading to delayed or inaccurate predictions with severe health consequences (Mehmood, 2021; 

Subramani, 2023). 

Despite the promise of ML, two persistent challenges hinder the development of reliable predictive models. 

First is the critical need for high accuracy, as even minor errors can have significant consequences. Second is the 

technical hurdle of class imbalance, a common characteristic of medical datasets where healthy individuals (the 

majority class) vastly outnumber those with heart disease (the minority class). This skew causes models to develop 

a bias towards the majority class, undermining their primary purpose of identifying high-risk patients (Ahsan, 

2022; Li, 2020). Furthermore, the "black-box" nature of many complex models raises concerns about 
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interpretability, which is essential for gaining clinical trust and ensuring fairness (Wahid et al., 2025). Therefore, 

building effective models requires a dual focus on optimizing predictive performance while addressing these 

fundamental data and transparency issues. 

The objective of this systematic literature review (SLR) is to systematically identify, synthesize, and evaluate 

the current literature on the use of MLP models for heart disease prediction. While numerous studies have applied 

these models, they frequently address critical challenges such as class imbalance or model interpretability in 

isolation. This fragmented approach has created a research gap: the knowledge landscape lacks a cohesive 

understanding of the combined effects and trade-offs of different optimization, imbalance-handling, and 

interpretation strategies when used together. 

Therefore, the primary contribution (novelty) of this work is to provide the first comprehensive, integrated 

analysis of three critical pillars: MLP optimization, class imbalance techniques, and SHAP-based interpretability. 

This leads us to re-emphasize the significant and clearly defined research gap that this paper aims to address: a 

systematic synthesis that cohesively analyzes the interplay between these three elements is notably absent from 

the literature. A holistic understanding of how optimization strategies affect models trained on imbalanced data, 

and how those models can be reliably interpreted, is crucial for building clinically viable systems. By 

systematically mapping the existing research, this paper offers a clear roadmap that identifies best practices and 

defines a concrete agenda for future research. To guide this investigation, this review seeks to answer the following 

research questions: 

RQ1: What optimization techniques for MLP models have been reported in the literature for predicting heart 

disease risk? 

RQ2: What methods for addressing class imbalance in heart disease datasets have been evaluated in studies 

using MLP models, and what effects have been reported on performance metrics? 

RQ3: How has SHAP (SHapley Additive exPlanations) been applied in the literature to interpret MLP-based 

heart disease models, and what key risk factors have been identified through its use? 

 

METHOD 

This study uses the Systematic Literature Review (SLR) methodology to comprehensively identify, evaluate, 

and synthesize existing research on MLP model optimization for heart disease prediction, with a specific focus on 

addressing class imbalance and model interpretability with SHAP. This review process is designed to be 

transparent, thorough, and replicable, adhering to established guidelines for conducting SLRs. 

 

Search Strategy 

The primary search was conducted across five leading scientific databases to ensure broad coverage of relevant 

literature: Google Scholar, IEEE Xplore, PubMed, ScienceDirect, and the ACM Digital Library. To maintain the 

relevance and currency of the findings, the search was limited to peer-reviewed articles published between January 

2015 and June 2025. The search strategy was built based on a formal search string constructed from four key 

conceptual blocks of keywords: a) Model ("Multilayer Perceptron" OR "MLP" OR "Neural Network"); b) Problem 

Domain ("heart disease" OR "cardiac risk" OR "myocardial infarction"); c) Technical Challenge ("class 

imbalance" OR "unbalanced data" OR "SMOTE"); and d) Interpretability: ("SHAP" OR "explainable AI" OR 

"interpretable ML"). These blocks were combined using the "AND" operator, while terms within each block were 

combined with "OR" to maximize recall. This structured query was adapted as necessary to meet the specific 

syntax requirements of each database. 

 

Inclusion and Exclusion Criteria 

To ensure the relevance and quality of the selected literature, a set of strict inclusion and exclusion criteria was 

established using the PICOS framework (Population, Intervention, Comparison, Outcomes, Study Design). This 

framework provides a structured approach to defining the scope of the review. Detailed criteria are outlined in 

Table 1. 

 

Table 1. Inclusion and Exclusion Criteria 

PICOS 

Component 
Inclusion Criteria Exclusion Criteria 

Population Studies that use datasets to predict heart disease 

risk in human patients. 

Studies focusing on non-human subjects or 

diseases other than heart disease. 

Intervention Studies that must apply a Multilayer Perceptron 

(MLP) model as a primary predictive tool. 

Studies using other machine learning models 

without MLP, or theoretical papers without 

implementation. 
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PICOS 

Component 
Inclusion Criteria Exclusion Criteria 

Comparison Studies that ideally compare model 

performance before and after applying class 

imbalance techniques, or provide a SHAP 

analysis. 

Studies that do not provide a basis for 

comparison or evaluation of model performance. 

Outcomes Studies must report model performance metrics 

(e.g., Accuracy, Precision, Recall, F1-Score, 

AUC) and/or feature importance from SHAP. 

Studies that do not report quantifiable 

performance outcomes. 

Study 

Design 

Peer-reviewed journal articles, full conference 

papers, and workshop proceedings. 

Grey literature (e.g., theses, patents), book 

chapters, abstracts, editorials, and non-English 

articles. 

 

Study Selection Process 

The study selection followed a multi-stage screening process guided by the PRISMA (Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses) method. The entire process is visually summarized in the 

PRISMA flow diagram presented in Figure 1. To ensure objectivity and minimize potential bias, the selection was 

conducted by two independent reviewers who were not part of the author team. The process began with the 

Identification phase, where an initial search in the specified databases yielded a total of 405 records (279 from 

Google Scholar and 126 from Scopus). Before screening, 55 duplicate records were identified and removed, 

leaving 350 unique records. 

In the Screening phase, these 350 records were first assessed by title and abstract. During this step, 233 records 

were excluded as they were clearly not relevant to the research questions. This left 117 reports that were sought 

for retrieval for a full-text review. Of these, 34 reports could not be retrieved (e.g., no accessible full-text PDF), 

resulting in 83 reports that were assessed for eligibility. During the full-text eligibility assessment, a further 53 

reports were excluded for specific reasons: 25 studies did not use an MLP model as their primary predictive tool, 

and 28 studies did not address the core concepts of class imbalance or interpretability as required by the PICOS 

criteria. Finally, in the Included phase, the remaining 30 studies that met all inclusion and exclusion criteria were 

included in the final qualitative synthesis. Any disagreements between the two reviewers during the screening 

stages were resolved through a consensus discussion. If a consensus could not be reached, a third independent 

reviewer was consulted to arbitrate and make the final decision. This rigorous, multi-stage process ensures the 

final selection is both comprehensive and highly relevant to the research objectives. 

 

 
Figure 1. PRISMA Flow Diagram 
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Quality Assessment 

Following the final selection, a quality assessment was performed on all 30 included studies to evaluate their 

methodological rigor and the reliability of their findings. Each paper was assessed against a predefined set of 

quality criteria adapted from established SLR guidelines. The criteria included: 

a. Clarity of Objectives: Does the study have clear and well-defined research questions or objectives? 

b. Appropriateness of Methodology: Is the methodology (including data source, preprocessing, and 

model selection) appropriate and clearly described? 

c. Validity of Results: Are the results presented clearly, and are the evaluation metrics appropriate for 

the study's objective? 

d. Contribution and Conclusions: Are the conclusions supported by the results, and does the study make 

a clear contribution to the field? 

Each study was rated on these criteria to ensure that the findings synthesized in this review are based on 

methodologically sound research. 

 

Data Extraction and Synthesis 

Following final selection and quality assessment, a structured data extraction form was used to systematically 

collect relevant information from each included study. This standardized approach ensured consistency and 

enabled effective comparison and synthesis of findings. The final step of this methodology is the synthesis of the 

extracted data. A narrative synthesis approach was used to integrate and summarize the findings, which are 

organized thematically based on the three research questions guiding this SLR. 

 

RESULT 

This section presents the findings from the systematic literature review. It begins with an overview of the study 

selection process, followed by a detailed, thematic synthesis of the findings aligned with the research questions, 

incorporating focused data tables for clarity. 

 

Overview of Selected Scientific Articles 

Initial literature searches confirmed that both heart attack prediction and model interpretability are highly active 

areas of research. A broad search for “Heart Attack Risk Prediction” on Google Scholar from 2016 to 2025 yielded 

many works, with an analysis of the top 200 papers showing over 119,500 citations, a high average citation rate 

per year (13,278). This indicates a mature and consistently impactful field of study over the past decade. In parallel, 

the query for “SHAP Interpretability in Machine Learning” shows a more recent but explosive growth trend. 

Although the first relevant papers appeared around 2019, the 200 papers analyzed in this domain have accumulated 

over 25,000 citations, indicating significant research interest and a rapidly forming core body of literature.  

Following this initial scope determination, a formal study selection process was conducted as described in the 

methodology. The search across all initially defined databases yielded 350 records. After removing duplicates, the 

titles and abstracts of these articles were screened for relevance. During this initial screening, articles not focused 

on machine learning or heart disease were excluded, reducing the number of potentially relevant articles to 83. 

The full texts of these 83 articles were then retrieved and comprehensively assessed for eligibility based on the 

PICOS criteria. From this set, 53 studies were excluded for reasons such as using non-MLP models, not addressing 

class imbalance or interpretability, or failing to report performance results. Finally, a final set of 30 studies met all 

inclusion criteria and were included in the qualitative synthesis. 

 

Synthesis of Findings for RQ1: MLP Model Optimization 

Before delving into the specific optimization techniques for MLP models, it is useful to understand the broader 

landscape of methods employed across the 30 reviewed studies. Figure 2 provides a visual summary of the 

frequency of different machine learning models and optimization strategies, highlighting the prevalence of tree-

based models and standard optimization practices. 
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Figure 2. Frequency of Different Models and Optimizations 

 

An analysis of the methods used across the 30 selected studies reveals a landscape dominated by well-

established machine learning algorithms, with tree-based models being particularly prevalent. As shown in the 

graph of method distribution, Random Forest (RF) is the most frequently employed model, appearing in 17 studies. 

Its popularity likely stems from its inherent robustness, its strong performance on tabular data without extensive 

tuning, and its ability to handle non-linear relationships effectively. This is followed by other traditional models 

like K-Nearest Neighbors (KNN) (12 studies) and Support Vector Machines (SVM) (11 studies). Interestingly, 

despite being a primary focus of this review, MLP and its variants (ANN/NN) appear less frequently (6 studies). 

This suggests that while neural networks are a key area of research, their higher complexity, greater need for 

hyperparameter tuning, and "black-box" nature lead many researchers to still rely on the proven performance and 

relative simplicity of traditional ensemble and instance-based learners for this prediction task. 

A critical finding is that common optimization techniques are applied broadly across these popular models to 

elevate their performance beyond baseline levels. Hyperparameter Tuning and Feature Selection are the most 

common optimization strategies, each appearing in 10 studies. Their prevalence indicates a widespread 

understanding that off-the-shelf models are insufficient for clinical-grade accuracy. The influence of these methods 

on the results is direct and significant: systematic tuning, for example through GridSearchCV as used by Bhatt et 

al (2023) and Saboor et al (2022), directly impacts performance by identifying the optimal model configuration, 

leading to higher accuracy. Similarly, feature selection improves results by reducing noise and model complexity, 

which can increase accuracy and decrease computational cost, as demonstrated by Ahmad et al. (2022). The near-

universal use of k-fold cross-validation (Ali et al., 2021; Rani et al., 2021) further ensures that these optimized 

results are generalizable and not simply an artifact of overfitting. 

While less frequent, the studies that do focus on MLP and other neural networks often explore more specialized 

and novel optimization strategies. This is likely because standard gradient-based optimization can be more 

challenging to configure for NNs and may be prone to local minima. Researchers therefore turn to advanced 

methods to unlock the full potential of these models. For instance, Nandy et al. (2023) and Patro et al. (2021) 

introduced bio-inspired approaches like Swarm Optimization and the Salp Swarm Algorithm to more effectively 

explore the vast solution space of network weights and biases. Furthermore, Y. Li et al. (2020) designed a custom 

"P-S loss" function, which directly influences the results by forcing the model to learn more effectively from the 

specific challenges of imbalanced ECG data. This suggests that while the broader field relies on tuning established 

models, a dedicated subset of research is focused on creating highly tailored and architecturally innovative neural 

network solutions to achieve state-of-the-art performance. 

Table 2 summarizes the findings related to RQ1: What optimization techniques for Multilayer Perceptron (MLP) 

models have been reported in the literature for predicting heart disease risk? It includes studies that applied specific 

optimization methods such as hyperparameter tuning, feature selection, advanced model architectures like 

ensembles, and robust validation protocols. 
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Table 2. Summary of Model Optimization and Validation Techniques 

Author, Year Model(s) Key Optimization Technique(s) 
Validation 

Method 

Ahmad et al., 2022 
RF, DT, GBC, SVM, 

etc. 
Sequential Feature Selection (SFS) 5-fold CV 

Ahmed & Husien, 2024 
Ensemble/Hybrid 

Models 

Literature Review on Ensembling 

(Voting, AdaBoost) 
N/A (Review) 

Ali et al., 2021 
MLP, KNN, RF, DT, 

etc. 
Standard Training 10-fold CV 

Bhatt et al., 2023 MLP, RF, XGBoost, DT GridSearchCV k-fold CV 

Chandrasekhar & 

Peddakrishna, 2023 
RF, KNN, LR, etc. 

GridSearchCV, Soft Voting Ensemble 

(SVE) 
5-fold CV 

El-Hasnony et al., 2022 
Label Ranking 

Classifier 
Grid Search 10-fold CV 

Katarya & Meena, 2021 
MLP, ANN, DNN, RF, 

etc. 
Comparative Analysis 

N/A 

(Comparative) 

Y. Li et al., 2020 Custom Ensemble NN 
Custom Loss Function (P-S Loss), 

DDAG Ensemble 
5-fold CV 

J. Li et al., 2022 
XGBoost, LR, RF, 

SVM 
LASSO Feature Selection 70/30 Split 

X. Li et al., 2023 
RF, AdaBoost, SVM, 

etc. 
Select K Best Feature Selection 80/20 Split 

Lu et al., 2022 XGBoost GridSearchCV 70/20/10 Split 

Mehmood et al., 2021 Custom CNN LASSO Feature Selection 30/70 Split 

Nandy et al., 2023 Custom 3-Layer ANN Swarm Optimization 200/103 Split 

Nowfal et al., 2025 Ensemble (XGB Meta) Stacking Ensemble N/A 

Patro et al., 2021 NN, SVM, NB, KNN 
Bayesian Optimization, Salp Swarm 

Algorithm 
80/20 Split 

Rajendran & Karthi, 2022 Ensemble (NB+LR) 
Entropy-based Feature Engineering 

(EFE) 
10-fold CV 

Rani et al., 2021 
RF, SVM, Adaboost, 

etc. 
Hybrid Feature Selection (GA+RFE) 10-fold CV 

Rath et al., 2022 Ensemble (SOM-AE) Deep Learning Ensemble 70/30 Split 

Rojek et al., 2024 LR, RF, KNN, etc. RandomizedSearchCV, GridSearchCV 80/20 Split 

Saboor et al., 2022 
SVM, AdaBoost, RF, 

etc. 
GridSearchCV, Data Standardization 10-fold CV 

Somantri & Wanti, 2024 NB, GLM Modified Genetic Algorithm (M-GA) 10-fold CV 

Subramani et al., 2023 
Stacking Ensemble (inc. 

MLP) 

Optuna Framework, GBDT+SHAP 

Selection 
80/20 Split 

Taher & Abdulazeez, 2023 Literature Review 
Review of Feature Selection (Lasso, 

Relief) 
N/A (Review) 

Wang et al., 2021 
MLP, XGBoost, SVM, 

etc. 
RFE Feature Selection, Grid Search 5-fold CV 
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Synthesis of Findings for RQ2: Handling Class Imbalance 

The challenge of class imbalance was identified as a central theme and significant obstacle in most of the 

reviewed papers. The most prevalently used strategy to mitigate this issue is the Synthetic Minority Over-sampling 

Technique (SMOTE), a data-level solution. Its popularity likely stems from its straightforward implementation 

and its direct, intuitive approach to solving data scarcity. The primary influence of SMOTE on the results is a 

significant improvement in the model's sensitivity and recall for the high-risk patient class. By generating synthetic 

instances, it provides the model with more minority class examples to learn from, directly addressing the bias 

caused by the skewed data distribution. This effect was consistently demonstrated in studies like Ali et al. (2021), 

where its application was a critical step in achieving high performance, and Rani et al. (2021), who noted 

improvements across multiple performance metrics. 

Furthering this data-level approach, some studies explored more sophisticated over-sampling techniques. For 

example, Wang et al. (2021) combined SMOTE with Edited Nearest Neighbors (SMOTE+ENN). This hybrid 

technique improves upon standard SMOTE by not only creating synthetic samples but also "cleaning" the data 

space by removing majority class samples that are close to the decision boundary, which can lead to a more robust 

and well-defined training set. The widespread adoption of SMOTE and its variants, as also confirmed in the 

systematic review by Ahsan & Siddique (2022), establishes it as the de facto standard data-level solution in the 

literature, valued for its accessibility and immediate impact on minority class detection. 

Although SMOTE is the most common method, the reviewed literature indicates that a one-size-fits-all solution 

is insufficient, prompting researchers to explore innovative algorithm-level techniques. These methods are less 

common, likely due to their higher implementation complexity and the need for a deeper understanding of the 

underlying learning algorithm. Unlike SMOTE, which alters the data, these techniques influence the results by 

modifying the model's learning process itself. For instance, Mehmood et al. (2021) adjusted the class weight ratio 

during training, which forces the model to pay a higher penalty for misclassifying the minority class. Similarly, Y. 

Li et al. (2020) designed a custom loss function to compel their model to focus on harder-to-classify minority 

examples. This approach can be highly effective and avoids the potential risk of introducing noise or artificial 

patterns that can sometimes occur with synthetic data generation. 

Table 3 summarizes the findings related to RQ2: What methods for handling class imbalance in heart disease 

datasets have been evaluated in studies using MLP models, and what are their reported effects on performance 

metrics? It includes studies that explicitly applied or analyzed techniques to manage imbalanced data. 

 

Table 3. Summary of Class Imbalance Techniques and Their Reported Effects 

Author, Year Imbalance Technique Used Reported Effect on Performance 

Ahsan & 

Siddique, 2022 

SLR Finding: SMOTE is most used; 

algorithm-level methods emerging. 
N/A (Review paper summarizing trends). 

Ali et al., 2021 SMOTE (Data-Level) 
Enabled models (KNN, DT, RF) to achieve 100% 

accuracy, sensitivity, and specificity. 

Y. Li et al., 

2020 

Algorithm-Level (Custom Loss, DDAG 

structure) 

Achieved high average sensitivity (89.25%) on a 

severely imbalanced dataset. 

Mehmood et al., 

2021 
Algorithm-Level (Class Weighting) 

Contributed to the CNN model achieving 97% 

accuracy for binary classification. 

Rani et al., 2021 SMOTE (Data-Level) 
Improved performance across all classifiers on 

metrics like accuracy, sensitivity, and F-Measure. 

Wang et al., 

2021 
SMOTE+ENN (Data-Level Hybrid) 

Used to create a robustly balanced training set for 

the MLP and XGBoost models. 

 

Synthesis of Findings for RQ3: SHAP in Model Interpretation 

A growing and impactful subset of the reviewed literature leverages SHapley Additive exPlanations (SHAP) to 

move beyond predictive accuracy and provide model transparency. The popularity of this approach stems from its 

crucial role in fostering clinical trust and utility. These studies consistently use SHAP to deconstruct "black-box" 

models and identify the most influential features driving their predictions. A significant finding from this synthesis 

is the strong convergence of key clinical risk factors identified across various models and datasets. For example, 

demographic factors such as age are universally recognized as highly influential, cited as primary predictors of 

mortality or disease presence by J. Li et al. (2022), X. Li et al. (2023), and Wang et al. (2021). The influence of 

this finding on the results is profound; by confirming that models are learning from well-established clinical 

factors, SHAP provides essential validation that is a prerequisite for any real-world clinical adoption. 
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Beyond demographics, SHAP analysis consistently highlights the importance of specific clinical and 

physiological markers. In a study on heart failure mortality, J. Li et al. (2022) found that average blood urea 

nitrogen (BUN) was the single most important predictor. Similarly, Wang et al. (2021) used SHAP to highlight 

that NT-proBNP and NYHA class are the primary predictors of 3-year mortality. Research by Subramani et al. 

(2023) further confirmed the consistency of SHAP, noting that its feature importance results aligned with those 

from a GBDT model and highlighted ST Slope as the primary predictor. This finding resonates with the study by 

Ozcan & Peker (2023), whose more transparent CART model also identified ST Slope as the most important 

feature. This cross-validation of feature importance across different model types and interpretability methods 

strengthens confidence in these clinical indicators and explains why SHAP is a popular choice: it provides a robust, 

model-agnostic way to verify that a complex model is learning patterns consistent with simpler, more trusted 

models. 

Symptomatic and categorical features are also consistently identified as critical drivers of model prediction. 

Subramani et al. (2023) highlights Chest Pain Type as one of the most important features identified by SHAP. This 

is highly consistent with the findings of Yazdani et al. (2021), who, using a weighted associative rule mining 

(WARM) approach, identified asymptomatic chest pain as a key component in all high-confidence rules for 

predicting heart disease. The consistent identification of this feature by disparate methods like SHAP and 

associative rule mining underscores its fundamental importance. This influences the results by demonstrating that 

these advanced models are capable of quantifying the impact of subjective, patient-reported symptoms, effectively 

bridging the gap between qualitative clinical assessment and quantitative risk prediction. 

 

Table 4. Key Predictive Features Identified by SHAP and Other Interpretability Methods 

Author, Year Interpretability Method Top Identified Predictive Features 

Bhowmik et al., 2024 Feature Importance Age, cholesterol, blood pressure, gender, smoking 

J. Li et al., 2022 SHAP Blood Urea Nitrogen (BUN), age, systolic BP 

X. Li et al., 2023 SHAP Heavy Metals (Cesium, Lead), age, gender 

Lu et al., 2022 SHAP Gender, Blood Pressure (Systolic & Diastolic) 

Nowfal et al., 2025 Associativity Analysis Chest Pain, Heart Rate, Slope Rate 

Ozcan & Peker, 2023 CART (Rule-Based) ST Slope, Oldpeak, Chest Pain Type 

Rojek et al., 2024 Feature Importance Heart rate, age, BMI, cholesterol 

Subramani et al., 2023 SHAP ST Slope, Chest Pain Type 

Wang et al., 2021 SHAP Age, NT-proBNP, NYHA class 

Yazdani et al., 2021 WARM (Rule-Based) Asymptomatic chest pain, exercise-induced angina 

 

 

DISCUSSIONS 

This section analyzes the principal findings synthesized from the 30 reviewed studies, offers a critical 

evaluation of the current state of the literature, identifies key research gaps that have emerged from the analysis, 

and proposes concrete directions for future research. 

 

Analysis of Principal Findings 

The synthesis of the reviewed literature reveals several significant trends in the application of machine learning 

for heart disease prediction. Firstly, the field is clearly maturing beyond the use of simple, out-of-the-box 

algorithms towards more complex and optimized solutions. This is evidenced by the widespread adoption of 

sophisticated ensemble methods, such as the stacking model proposed by Subramani (2023) and the soft voting 

ensemble by Chandrasekhar & Peddakrishna (2023). This trend suggests a collective understanding that single 

models are often insufficient to capture the intricate, non-linear relationships present in cardiovascular data. 

Furthermore, the consistent use of automated hyperparameter tuning frameworks like GridSearchCV (Bhatt et al., 

2023; Saboor et al., 2022) indicates a move towards more rigorous and reproducible research practices aimed at 

maximizing predictive power. 

Secondly, there is a clear and widespread acknowledgment of class imbalance as a fundamental challenge. The 

overwhelming prevalence of the Synthetic Minority Over-sampling Technique (SMOTE) (Ali et al., 2021; Rani 
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et al., 2021; Wang et al., 2021) establishes it as the de facto standard data-level solution. The implication is that 

SMOTE is perceived as a reliable and effective method for improving model sensitivity to the under-represented 

high-risk class. However, the emergence of more advanced techniques, such as the algorithm-level class weighting 

used by Mehmood (2021), suggests a growing recognition that simply altering the data distribution may not always 

be the optimal approach. 

Finally, the application of SHAP for model interpretability marks a pivotal shift from a singular focus on 

accuracy to a dual focus on performance and trustworthiness. The most powerful implication from the SHAP-

based findings is the strong alignment between the models' learned feature importance and established clinical 

knowledge. The consistent identification of risk factors such as age (Li et al., 2022; Wang et al., 2021) and chest 

pain type (Subramani et al., 2023) provides crucial validation that these complex models are learning clinically 

relevant patterns. From a practical medical standpoint, this is a critical finding. It implies that clinicians can begin 

to trust these AI systems as diagnostic aids, as the models' reasoning aligns with established medical science. For 

example, a model that flags a patient based on factors like age and ST Slope can be more readily accepted by a 

doctor, potentially leading to faster and more confident decision-making in a clinical setting. 

 

Critical Evaluation of the Literature 

Despite the advancements, a critical evaluation of the 30 reviewed studies reveals several methodological 

limitations. The most significant of these is an over-reliance on a small number of publicly available datasets, 

particularly the UCI Cleveland dataset (Ali et al., 2021; Jindal et al., 2021). While valuable for benchmarking, 

models trained on these datasets may lack generalizability to diverse, real-world clinical populations. Another 

prevalent issue is the inconsistency in reporting and the potential for inflated performance metrics, with some 

studies claiming near-perfect accuracy (Ali et al., 2021; Ahmad et al., 2022), which is unlikely to be reproducible 

in a clinical environment. 

When comparing this review to other SLRs in a similar domain, our findings both align and offer unique 

contributions. For instance, our conclusion regarding the prevalence of SMOTE and the challenge of 

interpretability aligns with the broader findings of Ahsan & Siddique (2022). However, their review covered a 

wider range of ML models and heart conditions. Our SLR provides a more focused and deeper analysis specifically 

on the optimization of MLP models and the emerging, critical role of SHAP for interpretability, a combination not 

previously synthesized in detail. This focused scope allows for a more granular identification of research gaps 

specific to the application of neural networks in this domain. 

Furthermore, it is important to acknowledge the potential for publication bias in the body of literature reviewed. 

There is a well-known tendency in scientific publishing to favor studies that report positive results or high accuracy 

scores. This bias may lead to an overestimation of the true effectiveness of certain models, as studies with negative 

or less impressive results may be less likely to be published and, therefore, were not included in our review. 

Additionally, our search was limited to articles published in English, which may have excluded relevant research 

from non-English speaking regions. These factors represent inherent limitations in the available literature that 

should be considered when interpreting the findings of this review. 

 

Research Gaps Identified from the Review 

Based on the explicit findings of this review, several critical research gaps have been identified, organized 

according to the research questions that guided this SLR. 

a. Pertaining to RQ1 (MLP Model Optimization): A primary gap is the lack of standardized architectures and 

reporting for MLP models, making it difficult to replicate findings or establish a baseline for what constitutes 

an optimal architecture. 

b. Pertaining to RQ2 (Handling Class Imbalance): There is a significant gap in the comparative analysis of 

imbalance techniques specifically for MLP models. It remains unclear whether it is more effective to modify 

the data (e.g., with SMOTE) or the algorithm itself. 

c. Pertaining to RQ3 (SHAP Interpretability): The application of SHAP is predominantly limited to generating 

global feature importance rankings. There is a substantial, unexplored opportunity to use SHAP for more 

granular, local-level analysis, such as investigating why a model misclassifies specific patients. 

 

 

Addressing the Gaps and Future Directions 

To advance the field, future research should be strategically directed at addressing the identified gaps. Future 

work should focus on establishing standardized benchmarking for MLP models and conducting head-to-head 

comparative studies of imbalance techniques. The application of XAI must also mature from confirmation to 

exploration, leveraging SHAP for in-depth error analysis and local-level interpretation. Finally, the field must 

prioritize generalizability by shifting towards large-scale, real-world EHR data and prospective cohorts for both 

training and, critically, external validation. 
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CONCLUSION 

This systematic literature review synthesized research on MLP model optimization for heart disease prediction, 

focusing on the dual challenges of class imbalance and interpretability. Key findings reveal a field moving toward 

advanced optimization through ensemble methods and automated tuning, with SMOTE being the standard for 

class imbalance. The application of SHAP has proven effective in validating models against established clinical 

knowledge. The main contribution of this review is a comprehensive roadmap highlighting both progress and 

critical gaps, though the study is limited by potential publication bias and its focus on English-language literature. 

Based on these findings, we recommend that future research prioritize rigorous comparative studies of imbalance 

techniques, deeper local-level analysis using explainable AI, and, most importantly, robust validation on large-

scale, real-world clinical data. Embracing these directions is essential for developing the next generation of 

predictive systems that are not only accurate but also trustworthy and clinically valuable. 
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