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Abstract: Class imbalance is one of the main challenges in 

classification problems, as it can reduce the model's ability to 

accurately identify minority classes and negatively impact the overall 

reliability of predictions. In response to this problem, this study 

proposes an integrated approach combining SMOTE and XGBoost to 

improve classification performance on imbalanced data. This approach 

aims to evaluate the impact of oversampling techniques on prediction 

accuracy and model sensitivity to class distribution. The evaluation 

was conducted using two public datasets representing different 

domains and different amounts of data, namely Spambase and 

Diabetes, to assess the effectiveness and generalization of the applied 

approach. The experimental results show that this integrated model 

consistently outperforms traditional comparison algorithms, with an 

F1 score of 0.94 and ROC-AUC of 0.98 on the Spambase dataset and 

ROC-AUC of 0.83 on the Diabetes dataset, with a good balance 

between precision and recall. The 10-fold cross-validation technique 

was applied to ensure objective performance estimates free from 

random data splitting bias. Additionally, this study highlights the 

importance of selecting appropriate evaluation metrics in the context 

of imbalanced data, as single accuracy often provides a misleading 

performance picture. This study makes a significant contribution by 

providing a benchmark for comparing the effectiveness of SMOTE-

XGBoost integration using two different datasets, accompanied by 

rigorous cross-validation. These findings reinforce the position of 

integrating data preprocessing strategies and ensemble learning as a 

competitive and adaptive solution for addressing class imbalance 

challenges in data-driven classification systems. 

 

Keywords: Smote; machine learning; Imbalanced Data; 

Classification; XGBoost 

 

INTRODUCTION 

In contemporary data-driven environments, data classification plays a central role in various 

intelligent systems. However, a major challenge often encountered in classification tasks is 

class imbalance, where the distribution of samples across classes is highly skewed. This 
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imbalance can significantly affect model performance by causing the classifier to prioritize the 

majority class while underrepresenting the minority class. As a result, models may demonstrate 

deceptively high accuracy while failing to detect rare but crucial instances, leading to what is 

widely recognized as the accuracy paradox (Kim & Kim, 2020) (S. Wang et al., 2021) (Elreedy 

& Atiya, 2019).  

 The challenge intensifies in large-scale datasets, where the degree of imbalance tends to 

escalate alongside data volume, making it increasingly difficult for machine learning models to 

accurately learn from the minority class (Elreedy & Atiya, 2019). Overlapping class boundaries, 

misclassification of minority samples, and deteriorating predictive performance are common 

consequences of improper class distribution. To address this, existing studies have introduced 

methods categorized into three main strategies: data-level approaches, algorithm-level 

modifications, and hybrid strategies (Xu et al., 2020). 

 Among data-level methods, SMOTE has emerged as one of the most prominent 

oversampling strategies. SMOTE creates synthetic instances of the minority class by 

interpolating between existing examples, thereby improving balance without introducing 

simple duplicates (Elreedy & Atiya, 2019). Numerous studies have reported its effectiveness in 

enhancing classification performance across domains such as student grade prediction (Abdul 

Bujang et al., 2023), fraud detection (Sun et al., 2020), and healthcare (Xu et al., 2020). To 

further improve sample quality, SMOTified-GAN, which combines SMOTE with Generative 

Adversarial Networks (GANs), has been introduced to generate more realistic minority class 

samples. Experimental results have shown that this integration can increase minority class 

quality by up to 9% (Sharma et al., 2022) (Dablain et al., 2023).  

 Despite these advances, traditional machine learning algorithms often lack robustness when 

facing severe class imbalance. As highlighted in recent research, their classification precision 

can significantly drop under such conditions (Sun et al., 2020). To provide more efficient 

training on imbalanced datasets, more complex models like Artificial Neural Networks (ANNs) 

and Deep Neural Networks (DNNs) have been improved with methods like batch normalizing, 

ReLU activation, and Borderline-SMOTE (Dablain et al., 2023). Using oversampling 

approaches with highly regularized ensemble-based classifiers is a huge step toward resolving 

class imbalance. Gradient boosting methods are great for working with sparse features and 

noisy datasets since they come with regularization algorithms built in (Chen & Guestrin, 2016) 

(C. Wang et al., 2020). In combination with DNNs, XGBoost has been used effectively in tasks 

such as network intrusion detection, forming hybrid models that involve feature normalization, 

selection, and deep classification layers (Devan & Khare, 2020). These models leverage the 

optimal aspects of both ensemble learning and deep learning to enhance generalization and 

predictive accuracy, even in the presence of imbalanced data (Nobre & Neves, 2019) (Zhang et 

al., 2018). 

 In these situations, metrics like precision-recall, ROC-AUC, and F1-score are commonly 

used to evaluate model performance (Hand, 2009) (Verbakel et al., 2020). Conventional 

handling without addressing the imbalance can lead to misleading evaluations, especially when 

the imbalance ratio is high.  

 In conclusion, many methods have been proposed to fix class imbalance, including data 

sampling methods, cost-sensitive learning, and ensemble models. However, a full comparison 

of machine learning algorithms using standardized methods like SMOTE across different fields 

is still needed. This study aims to find out how well different machine learning models operate 

on SMOTE-balanced datasets by using different evaluation methods to find the best ways to 

deal with class imbalance in the real world. 
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LITERATURE REVIEW 

Handling class imbalance has become a central concern in the development of machine 

learning classification models, as disproportionate class distributions can significantly degrade 

model performance, particularly in recognizing minority classes. One common approach to 

addressing class distribution imbalances is to add synthetic samples to minority classes through 

linear interpolation of the nearest neighbors. This strategy aims to create a more balanced 

representation of the data, thereby supporting a more equitable model learning process and 

enabling more effective generalization of patterns. The effectiveness of SMOTE has been 

demonstrated across various domains, including healthcare, social media, and financial 

prediction systems. For instance, studies in child stunting detection show that integrating 

SMOTE with the XGBoost model significantly improves classification performance, achieving 

an accuracy of 85.74%, a recall of 89.14%, and a ROC-AUC of 93.11%, indicating superior 

sensitivity to critical minority cases (Sugihartono et al., 2025). Similarly, research utilizing 

Random Forest for cardiovascular disease prediction reported improvements in accuracy, 

sensitivity, and specificity after applying SMOTE (Hasanah et al., 2024). In the domain of 

social media analysis, the combination of SMOTE with majority voting approaches yielded 

classification accuracy as high as 97% for sentiment analysis on Twitter data, with notable 

enhancements in recall and F1-score, reflecting increased sensitivity to minority classes (Suandi 

et al., 2024). 

Beyond standard SMOTE, several variants have been developed to overcome limitations 

such as the generation of noisy or overlapping samples. Borderline-SMOTE, for example, 

focuses on synthesizing samples near class decision boundaries to improve classification in 

highly imbalanced datasets. Studies have shown that Borderline-SMOTE consistently 

outperforms standard SMOTE in terms of accuracy and F1-score (Ujaran et al., 2024). Other 

variants, such as SMOTE-ENN and SMOTE-Tomek Link, combine oversampling with noise-

cleaning techniques to produce cleaner and more accurate data representations (Nemade et al., 

n.d.) (Husain et al., 2025). Furthermore, several methodologies integrate clustering algorithms 

with SMOTE to guarantee that the produced synthetic data aligns with the original data 

structure (Jiang et al., 2025). 

Overall, comparative results from multiple studies suggest that SMOTE and its variants 

significantly enhance performance metrics, with balanced accuracy reaching up to 98.75% in 

certain Random Forest implementations, and consistently outperforming other oversampling 

methods such as ADASYN across different contexts. However, the effectiveness of SMOTE is 

highly dependent on the characteristics of the dataset and the classification algorithm used 

(Halim et al., 2023). Therefore, the selection of SMOTE variants and their strategic integration 

with other techniques such as ensemble learning, normalization, or clustering must be tailored 

to the specific requirements of each case. As such, SMOTE remains a vital component in the 

classification pipeline for imbalanced data. 

 

METHOD 

This study employs an experimental quantitative method to assess the effectiveness of 

different machine learning algorithms in categorizing imbalanced data that has been pre-

processed using oversampling methods. The primary goal is to evaluate the performance of 

models before and after applying these methods using various assessment measures, including 

accuracy, F1-score, precision, recall, and ROC-AUC. 

 

Dataset 

 The evaluation and comparison of models in this study were conducted using datasets 

ranging from small to large scale, all of which explicitly exhibit class imbalance characteristics, 
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as shown in Table 1. The selection of datasets was based on varying class proportions that 

reflect real-world challenges in imbalanced data classification. All datasets were sourced from 

reputable open-access repositories, the UCI and Kaggle Machine Learning Repositories have 

both been widely used in previous studies on how to classify and manage imbalanced data. 

 
Table 1. Description for datasets 

Dataset Features Classess Instances 

 

Minority  Class ( %) Description 

Diabetes 
8 2 

768 34.90% Predict based on 

diagnostic 

measurements 

whether a patient has 

diabetes. 

Spam Base 
57 2 

4601 39.4% Classification of 

Spam and Non-

Spam Emails 

 

Imbalance Class 

 Class imbalance is a prevalent issue across various domains, including chemical and 

biochemical engineering, financial management, information technology, cybersecurity, 

business analytics, agriculture, and emergency management systems (Douzas & Bacao, 2019). 

It occurs when the distribution of samples among classes is uneven, specifically in binary 

classification problems, where one class (the majority) significantly outnumbers the other (the 

minority) (Sun et al., 2020). 

 

 
Figure 1. Imbalance Data 

 

 In Figure 1, the datasets used in this study, namely SpamBase and Diabetes, clearly exhibit 

imbalanced class distributions, with the minority class comprising a significantly smaller 

proportion of the total instances. 

 

Synthetic Minority Oversampling Technique (SMOTE) 

 Oversampling is a technique employed to rectify class imbalance by augmenting the sample 

size of the minority class to equal that of the majority class. A prevalent method is closest 

neighbor oversampling, wherein supplementary samples from the minority class are produced 
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based on the distribution of its nearest neighbors, utilizing the Euclidean distance metric  

(Adeoti Babajide Ebenezer1, 2021). This technique is considered efficient, easy to implement, 

and capable of expanding the training dataset size while increasing the number of features 

available for model learning, thereby improving the overall accuracy of the classification model 

(Sharma et al., 2022) (Xu et al., 2020).  

 SMOTE is an essential element in the oversampling technique. This technique entails 

creating synthetic samples from the minority class by linear interpolation between a selected 

minority data point 𝑥𝑖 and one of its nearest neighbors 𝑥̅, both belonging to the same class. The 

mathematical formulation for generating new samples is as follows: 

𝑥syn = 𝑥𝑖 + (𝑥̅ − 𝑥𝑖) × rand(0,1)                               (1) 

Here, 𝑥𝑖 is the selected minority sample, 𝑥̅  is one of its k-nearest neighbors in the minority 

class, and rand(0,1) denotes a random number uniformly sampled from the interval (0, 1). This 

interpolation strategy enables SMOTE to generate diverse yet realistic synthetic samples, 

thereby enhancing the classifier’s ability to learn minority class patterns more effectively. 

 An enhanced version of SMOTE, incorporating normal distribution principles, aims to 

generate synthetic samples that better reflect the statistical characteristics of the minority class. 

This approach improves the representational consistency of the synthetic data with the original 

data distribution and reduces the risk of introducing noise or class overlap. The methodological 

steps of this approach are outlined as follows (S. Wang et al., 2021), 

 In the preprocessing stage prior to applying SMOTE, normalization was performed on 

numerical features to ensure that all attributes were scaled uniformly. This step is crucial 

because SMOTE generates synthetic data based on distance calculations between data points, 

and variations in scale can lead to unrepresentative interpolations. Among the available 

normalization methods, Min-Max Normalization was selected due to its simplicity and 

effectiveness in preserving the proportional relationships between features without altering the 

original data distribution (S. Wang et al., 2021). Unlike Z-score normalization, which is more 

appropriate for normally distributed data, or Robust Scaler, which is designed for datasets with 

significant outliers (Sun et al., 2020), Min-Max was deemed more suitable in this study since 

the data had been pre-cleaned and contained no extreme values. By ensuring consistent feature 

scaling, the synthetic samples produced by SMOTE become more stable and representative, 

thereby supporting a more reliable classification process. 

 The first step in enhancing SMOTE with a normal distribution-based approach involves 

standardizing each feature of the minority class samples to ensure consistent scale and 

comparability. This standardization is performed using min–max normalization, which 

transforms the values of each feature into the range [0,1]. The normalization formula is defined 

as: 

𝑥𝑖𝑗
∗ =

𝑥𝑖𝑗−𝑥𝑗
𝑚𝑖𝑛

𝑥𝑗
𝑚𝑎𝑥−𝑥𝑗

𝑚𝑖𝑛                        (2) 

 In this expression, 𝑥𝑖𝑗 denotes the value of the j feature for the I sample; 𝑥𝑗
𝑚𝑖𝑛 and 𝑥𝑗

𝑚𝑎𝑥  

refer to the minimum and maximum values of the j feature across all samples belonging to the 

minority class. This normalization ensures that all features contribute equally in subsequent 

stages and prevents dominance by features with larger numeric ranges, thereby improving the 

quality of synthetic sample generation. 

 After the normalization process is completed, the next step is to calculate the centroid (mean 

vector) of the normalized minority class samples. This centroid represents the central tendency 

of the minority class distribution and serves as a primary reference point in the generation of 

synthetic samples. The calculation is formulated as follows: 

𝑥̅′ =
1

𝑛
∑  𝑛
𝑖=1 𝑥𝑖

∗             (3) 
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 Where n denotes the total number of minority class samples, and 𝑥𝑖
∗ represents the 

normalized feature vector of the i sample. By averaging all normalized minority class samples, 

this centroid provides a general representation of the feature distribution within the class and 

offers a stable foundation for distribution estimation and the generation of more realistic and 

targeted synthetic data. 

 The third step in the normal distribution-based SMOTE enhancement involves estimating 

the standard deviation of each normalized feature in the minority class dataset. This step is 

essential to quantify the spread or dispersion of data points around the centroid, thus capturing 

the variability inherent in each feature. The standard deviation for the j feature is calculated 

using the following formula: 

𝜎𝑗 =
1

𝑛
∑  𝑛
𝑖=1 (𝑥𝑖𝑗

∗ − 𝑥̅𝑗
′)
2
                   (4) 

 Where 𝑥𝑖𝑗
∗   represents the normalized value of the 𝑗 feature for the 𝑖 sample, and 𝑥̅𝑗

′ denotes 

the mean of the 𝑗 feature across all normalized minority class samples. The resulting standard 

deviation values are used to guide the synthesis process by controlling the magnitude of 

variation around the centroid. This ensures that newly generated synthetic samples maintain 

statistical consistency with the original feature distribution and reduces the risk of generating 

unrealistic or noisy data points. 

 The fourth step in the development of SMOTE based on a normal distribution involves 

synthesizing new samples that incorporate the statistical dispersion of the minority class. In this 

stage, synthetic samples (𝑝𝑖) are generated by adding noise drawn from a standard normal 

distribution to the centroid of the normalized minority class data. This process is formulated as: 

𝑝𝑖 = 𝑥̅′ + 𝜎 ⋅ 𝑁(0,1)             (5) 

 Where 𝑥̅′ represents the centroid vector of the standardized minority class data, 𝜎 is the 

vector of standard deviations for each feature, and 𝑁(0,1) denotes a vector of random values 

drawn from the standard normal distribution. By introducing controlled noise around the 

centroid, the newly generated samples remain within a relevant range of the feature space while 

maintaining statistical consistency with the original data distribution. This approach enables the 

creation of more diverse and realistic synthetic samples, while also minimizing the risks of class 

overlap or the generation of non-representative instances. 

 

 This study uses the 10-fold cross-validation technique on oversampled training data to obtain 

a more reliable performance evaluation and reduce bias due to random data division. In this 

approach, the training data is divided into ten stratified and balanced subsets; each subset is 

used in turn as validation data, while the other nine subsets serve as training data. This process 

is repeated ten times so that each subset is used exactly once as test data. The average accuracy 

is calculated to represent the overall performance of the model, while the standard deviation is 

used to measure the consistency of performance across folds. The choice of K = 10 is based on 

empirical results showing that this configuration provides an optimal balance between bias and 

variance in classification tasks (James et al., 2021). 

 

Extreme Gradient Boosting (XGBoost) 

 Extreme Gradient Boosting (XGBoost) is an advanced development of the gradient boosting 

technique that utilizes an ensemble learning approach to build highly accurate predictive 

models. In the process, XGBoost gradually produces a series of weak learners, which are simple 

models that have slightly better classification capabilities than random guesses, generally in the 

form of decision trees with limited depth. Each model is built sequentially, with subsequent 

iterations focused on correcting the prediction errors of the previous model. This goal is 

achieved by giving greater weight to training samples that were previously misclassified. 
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Through this approach, the overall performance of the model improves progressively as the 

number of iterations increases. (Zhang et al., 2018) (C. Wang et al., 2020). 

Formula Extreme Gradient Boosting (XGBoost) 

𝑦̂𝑖 = ∑  𝐾
𝑘=1 𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ ℱ                       (6) 

 where 𝑓𝑘 denotes the 𝑘 decision tree (serving as a weak learner), 𝐾 represents the total 

number of iterations or trees in the ensemble, and 𝐹 is the function space comprising all decision 

tree models. The vector 𝑥𝑖  refers to the input features of the 𝑖 sample being processed. This 

approach constructs the model in an additive manner, where each function 𝑓𝑘 is responsible for 

correcting the prediction errors made in the previous iteration, thereby progressively improving 

the model’s accuracy at each stage. 

 

Objective function 

 Used to measure and minimize prediction errors while controlling model complexity. 

𝐿(𝑡) = ∑  𝑛
𝑖=1 𝑙 (𝑦𝑖 , 𝑦̂𝑖

(𝑡−1)
+ 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡)                     (7) 

 Represents the loss function, which quantifies the discrepancy between the true label 𝑦𝑖 and 

the prediction 𝑦̂𝑖
(𝑡−1)

 from the previous iteration, incremented by the output of the newly added 

decision tree 𝑓𝑡(𝑥𝑖). The function 𝑙(⋅) can take the form of squared error for regression or log-

loss for classification tasks, depending on the problem domain. The second component, Ω(𝑓𝑡), 
denotes the regularization term, which controls the complexity of the model. 

 

Performance Evaluation 

 In classification tasks involving imbalanced datasets, relying solely on accuracy as an 

evaluation metric does not adequately represent the model's total performance. Consequently, 

evaluation is conducted by incorporating numerous supplementary metrics to present a more 

comprehensive assessment of the model's capacity to identify both minority and majority 

classes. This multi-metric methodology facilitates a more precise and insightful performance 

evaluation (Verbakel et al., 2020). 

 

Accuracy 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                       (8) 

 TP represents True Positive, TN denotes True Negative, FP signifies False Positive, and FN 

indicates False Negative. Accuracy quantifies the ratio of correct predictions to the total 

instances; nevertheless, it can be deceptive in imbalanced scenarios, since the model may 

exhibit bias towards the majority class. 

 

Precision 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                       (9) 

 Precision denotes the ratio of true positive predictions to the total positive predictions, 

illustrating the model's efficacy in accurately detecting minority class cases while minimizing 

false positives. 

 

Recall 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                      (10) 

 This metric measures the model’s ability to correctly detect all actual positive instances. In 

imbalanced data scenarios, recall is particularly important since it reflects how well the model 

captures the minority class. 
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F1-Score 

F1-Score = 2 ×
 Precision × Recall 

 Precision + Recall 
                    (11) 

 The F1-score is particularly significant when a trade-off exists between precision and recall, 

rendering it an essential metric for imbalanced datasets. 

 

ROC-AUC 

 Assesses the model's ability to differentiate between categories. An AUC approaching 1 

indicates robust discriminative ability, whereas an AUC near 0.5 implies performance 

comparable to random chance. 

 

RESULT 

This section delineates the outcomes of the implementation and assessment of the 

classification method utilizing the XGBoost algorithm, which has been refined by the SMOTE 

oversampling methodology. The results are systematically presented, beginning with a 

flowchart that illustrates the overall research process, followed by a comparative analysis of 

model performance. 

 

 
Figure 2. Flow 

 

 The research stages commence with dataset collecting, succeeded by a data preprocessing 

step. This phase comprises three primary steps: addressing missing values, executing 

normalization to standardize all features, and displaying class distribution to detect any data 

imbalance. 

 After preprocessing is done, the dataset is divided into two parts: the training dataset and the 

testing dataset. Then, the SMOTE method is used to oversample the training dataset. This is 

done to balance the quantity of samples in the minority class. We use the balanced dataset to 

train a classification model that uses the XGBoost technique. 

 The concluding stage is to assess the model's efficacy utilizing the testing dataset. This 

assessment utilizes various essential parameter metrics for a thorough evaluation of the model's 

proficiency in properly classifying unbalanced data. 
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Tabel 2. Evaluation By Dataset 

Dataset Accuracy Precision Recall F1-score Support 

Diabetes 0.75 0.79 0.76 0.77 154 

Spambase 0.94 0.94 0.94 0.94 921 

 

 The evaluation results indicate that the XGBoost algorithm exhibits competitive 

classification performance on two separate datasets. The Diabetes dataset yielded a model 

accuracy of 0.76, with precision at 0.79, recall at 0.76, and an F1-score of 0.77, demonstrating 

a favorable equilibrium between sensitivity and precision among imbalanced data. In contrast, 

the model attained optimal performance on the Spambase dataset, with accuracy and all major 

evaluation metrics reaching 0.94. This highlights XGBoost's strong capability in consistently 

handling class distinction, particularly in large-scale datasets. These findings affirm the 

robustness of XGBoost in managing class distribution complexity while maintaining high 

predictive accuracy (Liu et al., 2020). 

 

 
Figure 3. Confusion matrix 

 

 In the Spambase dataset, XGBoost demonstrated strong classification performance, 

accurately detecting 519 true negatives and 347 genuine positives, with minimal classification 

error rates. There are 19 false positives and 36 false negatives. This distribution highlights the 

model's ability to maintain a fair balance between sensitivity and specificity, as well as its 

effectiveness in managing a broad and complex class distribution. On the other hand, despite 

the smaller size of the diabetes dataset and the more complex clinical classification challenges 

it presents, the model still achieves competitive performance. The model demonstrates excellent 

sensitivity toward the minority class, with 80 true negatives, 37 true positives, 27 false positives, 

and 10 false negatives, while maintaining overall prediction accuracy. 

 

 
Figure 4. Curva Roc 
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 Where Figure 4. Roc curve analysis confirms the discriminative ability of the model across 

the evaluated datasets. For the Diabetes dataset, an AUC value of 0.839 indicates a reasonably 

good capability in distinguishing between positive and negative classes, although there is still 

room for improvement, particularly in addressing class imbalance. In contrast, the Spambase 

dataset achieves an AUC of 0.989, which is very close to 1, reflecting near-perfect class 

separation. According to ROC theory, such high AUC values demonstrate strong model 

performance in minimizing false positives while maximizing true positive detections. Overall, 

these results validate the reliability and effectiveness of the XGBoost model, especially when 

supported by SMOTE-based oversampling techniques. 

 
Tabel 3. Performance Comparison of ML Models 

 

 In the Diabetes dataset, the XGBoost model showed enhanced classification efficacy relative 

to alternative machine learning techniques, including Decision Tree, Support Vector Machine 

(SVM), Gaussian Naive Bayes, and Logistic Regression. This model attained an accuracy of 

0.79 and a ROC-AUC of 0.83, the highest among all comparative models. The results 

demonstrate that our method is not only more precise in identifying positive cases (diabetic 

patients) but also exhibits superior discriminative capability in differentiating between classes, 

a vital factor in medical data analysis with imbalanced class distributions. 

 The XGBoost model demonstrated superior performance in the Spambase dataset, achieving 

a score of 94% across all major measures, including accuracy, precision, recall, and F1-score, 

along with a ROC-AUC value of 0.98, indicative of near-optimal performance. This 

accomplishment exceeds the AUC values of 0.92 and 0.91 attained by the logistic regression 

and decision tree models. In contrast, algorithms like SVM and Gaussian Naive Bayes exhibited 

diminished precision and recall metrics, indicating constraints in managing high-dimensional 

and unbalanced datasets. These findings underscore that the integration of XGBoost with 

SMOTE-based oversampling approaches can yield more dependable predictions and enhanced 

generalization in practical classification contexts. 

 

DISCUSSIONS 

 This study focuses on addressing classification challenges in imbalanced datasets by 

integrating the SMOTE with the XGBoost algorithm. Evaluations were conducted on two 

distinct datasets, Diabetes and Spambase, representing the domains of clinical health and digital 

communication, respectively. Based on experimental outcomes and metric-based evaluations, 

several key discussion points are elaborated below: 

 

Effectiveness of SMOTE and XGBoost Integration 

DATASET Model Accuracy Precision Recall F1-Score ROC-AUC 

Diabetes 

DecisionTree 0.72 0.54 0.68 0.60 0.71 

SVM 0.73 0.55 0.68 0.61 0.72 

GaussianNB 0.75 0.59 0.70 0.64 0.74 

Logistic Regression 0.74 0.56 0.66 0.61 0.72 

XGBoost 0.75 0.79 0.76 0.77 0.83 

SpamBase 

DecisionTree 0.90 0.88 0.90 0.89 0.91 

SVM 0.69 0.64 0.65 0.64 0.69 

GaussianNB 0.80 0.70 0.93 0.70 0.83 

Logistic Regression 0.91 0.89 0.92 0.90 0.92 

XGBoost 0.94 0.94 0.94 0.94 0.98 
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 The application of SMOTE during the preprocessing stage significantly improved the 

representation of minority classes, particularly when combined with XGBoost. On the 

Spambase dataset, XGBoost achieved an F1-score of 0.94 and a ROC-AUC of 0.98, surpassing 

other models such as Decision Tree (F1: 0.89, AUC: 0.91) and SVM (F1: 0.64, AUC: 0.69). 

These findings suggest that the proposed integration not only improves class balance but also 

enhances the model’s discriminative power in recognizing minority class patterns. 

 

Model Generalization Across Domains 

 XGBoost also demonstrated consistent performance on the smaller and more complex 

Diabetes dataset, with a recall of 0.76 and an ROC-AUC of 0.83, outperforming SVM (recall: 

0.68, AUC: 0.72) and logistic regression (recall: 0.66, AUC: 0.72). This suggests the model’s 

robustness in generalizing across domains, even under data-limited and clinically sensitive 

scenarios. 

 

ROC Curve Analysis and Classification Accuracy 

 The ROC curves revealed strong discriminative ability of the XGBoost model in 

distinguishing between positive and negative classes. In the Spambase dataset, the curve closely 

approached the ideal upper-left corner (AUC: 0.989), indicating an optimal trade-off between 

true positive and false positive rates. This visualization supports the validity of the previously 

calculated numerical metrics. 

 

Model Comparison and Performance Stability 

 Compared to models such as Gaussian Naive Bayes and Decision Tree, XGBoost 

consistently provided the best balance among accuracy, precision, recall, and F1-score across 

both datasets. For example, GaussianNB exhibited high recall but low precision (Spambase 

Recall: 0.93, Precision: 0.70), suggesting a tendency toward false positives. The decision tree, 

on the other hand, displayed signs of overfitting on certain dataset structures, as indicated by 

its inconsistent cross-dataset performance. 

 

Limitations and Opportunities for Improvement 

 While SMOTE improves model performance, it relies on linear interpolation among nearest 

neighbors, which can result in overly homogeneous synthetic samples. This may lead to 

overfitting, particularly on datasets with complex structures or high variability. To mitigate this, 

future studies could explore advanced resampling techniques such as Borderline-SMOTE, 

ADASYN, or hybrid methods like SMOTE-ENN to enhance the diversity of synthetic data 

while maintaining classification accuracy. 

 

Contribution to the Literature on Imbalanced Data Classification 

 This study validates the efficacy of XGBoost as a classification model that achieves superior 

performance, particularly when utilized on data that is imbalance by suitable oversampling 

methods. The primary methodological contribution is the demonstration that the predictive 

quality for minority classes is influenced not only by the algorithm's efficacy but also by data 

preprocessing procedures that address class distribution imbalances. In this context, approaches 

like SMOTE are essential for achieving a more balanced data representation, thereby enhancing 

XGBoost's capacity to effectively differentiate between classes. This study underscores the 

significance of employing evaluation metrics that are responsive to class distribution. 
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CONCLUSION 

 This study integrates the SMOTE with the XGBoost algorithm to address classification 

challenges on datasets with imbalanced class distributions. Evaluations were conducted across 

two distinct domains, diabetes and spambase, to assess the model’s consistency and 

generalizability. 

 This study's findings demonstrate that the integration of the SMOTE technique with the 

XGBoost model markedly enhances classification performance, especially for the F1-score and 

ROC-AUC metrics, which are responsive to class distribution. The created model attained an 

AUC value of 0.98 on the Spambase dataset and 0.83 on the Diabetes dataset, indicating its 

proficiency in properly identifying occurrences from minority classes. In comparison to 

conventional machine learning methods like decision trees, support vector machines (SVM), 

and logistic regression, the XGBoost-based method regularly exhibits enhanced performance 

for overall accuracy and sensitivity to class imbalance. 

 Moreover, the use of 10-fold cross-validation improved the reliability of performance 

estimation and mitigated potential bias due to random data partitioning. This study also 

underscores the importance of selecting appropriate evaluation metrics, as accuracy alone may 

be misleading in imbalanced data scenarios. 

 SMOTE's generation of synthetic samples via linear interpolation between minority 

neighbors can produce points that invade majority class regions, leading to label noise and 

ambiguity, especially in datasets with overlapping or non-linear class boundaries. The 

assumption of uniform interpolation fails in the presence of minority class sub-clusters (small 

disjuncts), causing synthetic samples to blur distinct clusters and reduce intra-class variability 

representation. As a result, models may fit superficial patterns rather than the true decision 

boundary, increasing overfitting risk and diminishing generalization capabilities. (Elreedy & 

Atiya, 2019). Therefore, future work is encouraged to explore more advanced techniques such 

as Borderline-SMOTE or SMOTE-ENN. In conclusion, integrating SMOTE with XGBoost 

constitutes a robust and adaptable approach for real-world classification tasks, particularly 

those requiring high sensitivity to minority instances. Future research may benefit from 

incorporating more advanced oversampling strategies to address the current limitations in 

synthetic diversity. 
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