Application of Apriori Algorithms to Determine Associations in Outdoor Sports Equipment Stores

Main Article Content

Eni Irfiani

Abstract

A good sales strategy has an effect on increasing the number of sales of goods. Problems that often occur in outdoor sports equipment stores are the difficulty in determining sales strategies because there is not much interest in outdoor sports in the community. In addition, the amount of inventory in the store is excessive, which affects the sales cycle of goods. One way to help determine strategy is to use apriori algorithm. In this method can determine consumer shopping behavior patterns. Apriori algorithms are part of the data mining analysis association. This algorithm is used to determine association rules. In the study, a combination of sports equipment purchased by consumers will be determined. Determination of the combination starts from 1 itemset to 3 itemsets, the combination of rule association produces different sales transaction patterns. The results of the study in the form of a combination of consumer shopping behavior patterns that will be used as recommendations for shop owners in determining the sales strategy. The resulting Rule association will help sales promotions and add the amount of inventory that many customers buy.

Downloads

Download data is not yet available.

Article Details

How to Cite
IRFIANI, Eni. Application of Apriori Algorithms to Determine Associations in Outdoor Sports Equipment Stores. SinkrOn, [S.l.], v. 3, n. 2, p. 218-222, mar. 2019. ISSN 2541-2019. Available at: <https://jurnal.polgan.ac.id/index.php/sinkron/article/view/10089>. Date accessed: 24 may 2019. doi: https://doi.org/10.33395/sinkron.v3i2.10089.
Section
Articles
**************** Abstract viewed = 28 times ****************

References

Al-Maolegi, M., & Arkok, B. (2014). An Improved Apriori Algorithm For Association Rules. International Journal on Natural Language Computing (IJNLC), 3(1), 21–29. https://doi.org/10.5121/ijaia.2011.2304

Alfiah, F., Pandhito, B. W., Sunarni, A. T., Muharam, D., & Matusin, P. R. (2018). Data Mining Systems to Determine Sales Trends and Quantity Forecast Using Association Rule and CRISP-DM Method. International Journal of Engineering and Techniques, 4(1), 186–192. Retrieved from http://www.ijetjournal.org

Han, J., & Kamber. (2006). Data Mining Concept and Techniques. India: New Age International Limited.
Kaur, D., & Kaur, J. (2017). Data Mining in Supermarket: A Survey. International Journal of Computational Intelligence Research, 13(8), 1945–1951. Retrieved from http://www.ripublication.com

Larose, D. T. (2005). Discovering Knowledge in Data, an Introduction to Data Mining. Canada: John Wiley & Sons, Inc.

Listriani, D., Setyaningrum, A. H., & A, F. E. M. (2016). Penerapan Metode Asosiasi Menggunakan Algoritma Apriori Pada Aplikasi Analisa Pola Belanja Konsumen ( Studi Kasus Toko Buku Gramedia Bintaro ). Jurnal Teknik Informatika Vol 9 No. 2, Universitas Islam Negeri Jakarta, 9(2), 120–127.

Mangla, V., Sarda, C., & Nadu, T. (2013). Improving the efficiency of Apriori Algorithm in Data Mining. International Journal Of Science, Engineering And Technology, 3(3), 393–396.

Pane, D. K. (2013). Implementasi Data Mining Pada Penjualan Produk Elektronik Dengan Algoritma Apriori ( Studi Kasus : Kreditplus ). Pelita Informatika Budi Darma, IV(3), 25–29. https://doi.org/2301-9425

Raorane, A., & Kulkarni, R. V. (2011). Data Mining Techniques: A Source for Consumer Behavior Analysis. International Journal of Database Management Systems, 3(3), 45–56. https://doi.org/10.5121/ijdms.2011.3304

Rodpysh, K. V., Aghai, A., & Madji, M. (2012). Applying Data Mining in Customer Relationship Management. International Journal of Information Technology, Control and Automation, 2(3), 15–25. https://doi.org/10.5121/ijitca.2012.2302

Septiana, Y., & Dharmayanti, D. (2016). Penerapan Improved Apriori Pada Aplikasi Data Mining Di Perusahaan Kalvin Socks Production Jurnal Ilmiah Komputer dan Informatika ( KOMPUTA ). Jurnal Ilmiah Komputer Dan Informatika (KOMPUTA), 5(1), 35–41.

Shah, N., Solanki, M., Tambe, A., & Dhangar, D. (2015). Sales Prediction Using Effective Mining Techniques. International Journal of Computer Science and Information Technologies (IJCSIT), 6(3), 2287–2289.
Sholik, M., & Salam, A. (2018). Implementasi Algoritma Apriori untuk Mencari Asosiasi Barang yang Dijual di E-commerce OrderMas. Techno.Com, 17(2), 158–170.

T, S., & Sundaram, V. (2012). Association Models for Prediction With Apriori Concept. International Journal of Advances in Engineering & Technology, 5(1), 2231–1963.

Tama, B. A. (2010). Penetapan Strategi Penjualan Menggunakan Association Rules dalam Konteks CRM. Jurnal Generic, Vol. 5(No.1), 35–38.