The Implementation of K-Means Algorithm for Cluster Majoring to New Students in SMKN 2 of South Tangerang
DOI:
10.33395/sinkron.v4i1.10133Keywords:
clustering, k-means, majoring, vocational high schoolAbstract
The diversity of majors in vocational schools of SMKN 2 South Tangerang makes some students confuse of their choices. Determination of majors is important because it will affect the academic activities of students. The purpose of the right majoring is so that students can learn optimally, and be able to equip themselves with competency skills according to their talents, interests and abilities when entering the workforce. This study applies the Clustering Method with the K-means Algorithm, to help students determine their majors, also helps the school in clustering majors. Determination of these majors is based on 320 student data with attributes of the National Examination during Junior High School (Mathematics, English, Indonesian, and Science), Registration Pathways, and Gender. Calculations that occur as many as 7 iterations with the K-Means Clustering Method, with the final centroid: C1 = 1.55; 4.08; 3.65; 4.06; 3.36; 1.93. C1 represents the Industrial Electronics Engineering Major, with the results of 49 students. C2 = 1; 3.69; 3.26; 2.55; 3.09; 1.96. C2 represents Light Vehicle Engineering majors, with 95 students. C3 = 1,98; 4,09; 3,60; 2,79; 3,083; 1,94. C3 = 1.98; 4.09; 3.60; 2.79; 3,083; 1.94. C3 represents the Accounting major, with 96 students. C4 = 1.18; 3.90; 3.39; 2.18; 2.02; 1.93. C4 represents the Multimedia major, with a total of 44 students And C5 = 1,055; 3.72; 2; 2,389; 2.86; 1.97. C5 represents the Motorcycle Business Engineering major with 36 students.
Downloads
References
Irwansyah, Edy, and Muhammad Faisal. 2015. Advanced Clustering Teori Dan Aplikasi. 1st ed. Yogyakarta: CV BUDI UTAMA.
Listriani, Dewi, Anif Hanifa Setyaningrum, and Fenty Eka M.A. 2016. “PENERAPAN METODE ASOSIASI MENGGUNAKAN ALGORITMA APRIORI PADA APLIKASI ANALISA POLA BELANJA KONSUMEN ( Studi Kasus Toko Buku Gramedia Bintaro ).” 9(2): 120–27.
Metisen, Benri Melpa, and Herlina Latipa Sari. 2015. “ANALISIS CLUSTERING MENGGUNAKAN METODE K-MEANS DALAM PENGELOMPOKKAN PENJUALAN PRODUK PADA SWALAYAN FADHILA.” 11(2): 110–18.
Muningsih, Elly, and Sri Kiswati. 2015. “Penerapan Metode K-Means Untuk Clustering Produk Online Shop Dalam Penentuan Stok Barang.” 3(1).
Nasari, Fina, Surya Darma, and Sistem Informasi. 2015. “PENERAPAN K-MEANS CLUSTERING PADA DATA PENERIMAAN MAHASISWA BARU.” : 6–8.
Nofriansyah, Dicky. 2015. Konsep Data Mining VS Sistem Pendukung Keputusan. 1st ed. Yogyakarta: CV BUDI UTAMA.
Nugroho, Yusuf S, and Syarifah N Haryanti. 2015. “Klasifikasi Dan Klastering Penjurusan Siswa SMA Negeri 3 Boyolali.” I(1): 3–8.
Nur, Fauziah, M Zarlis, and Benny Benyamin Nasution. 2015. “Penerapan Algoritma K-Means Pada Siswa Baru Sekolah Menengah Kejuruan Untuk Clustering Jurusan.” (9): 100–105.
Sabariah, Marrylinteri Istoningtyas, and Sharipuddin. 2018. “Penentuan Jurusan Ke Perguruan Tinggi Menggunakan Metode Clustering Di SMAN 3 Kuala Tungkal.” 13(2).
Sari, Riyani Wulan, Anjar Wanto, and Agus Perdana Windarto. 2018. “IMPLEMENTASI RAPIDMINER DENGAN METODE K-MEANS ( STUDY KASUS : IMUNISASI CAMPAK PADA BALITA BERDASARKAN PROVINSI ).” 2: 224–30.
Vulandari, Retno Tri. 2017. Data Mining Teori Dan Aplikasi Rapidminer. 1st ed. Yogyakarta: Gava Media.