Optimising the Particle Swam Optimazion Usage for Predicting Indonesia Presidential Election Result Period 2019-2024

Main Article Content

Dinar Ajeng Kristiyanti Normah Normah
Corresponding Author:
Dinar Ajeng Kristiyanti | dinar@nusamandiri.ac.id

Copyright (C):
Dinar Ajeng Kristiyanti, Normah Normah


Indonesia is a Democrat nation. A general election known as the PEMILU has become a tradition of the nation that is synonymous with political issues and leadership turnover. Social media is one place in expressing the opinions and aspirations of people including politics, Twitter is one of the social media used as a place for politicians including two couples of presidential candidate and vice president of INDONESIA in Campaign to win a vote in the elections of 17 April 2019. This research analyzes public opinion i.e. comments on Twitter accounts @jokowi, @KyaiMarufAmin, @prabowo, @sandiuno into two categories of positive and negative opinions by comparing the text classifier model Naïve Bayes and SVM, and the implementation of The PSO algorithm to obtain optimal accuracy results. The results of the study show Prabowo Sandi won the prediction of presidential candidate with the best accuracy result of 77.00% acquired model Naïve Bayes + PSO, and 86.20% acquired model SVM + PSO, with an increase in accuracy 7.5% on model SVM, And 2.1% on the model Naïve Bayes when compared before done optimization with PSO algorithm.

Keyword: Opnion Mining; Presidential Election; SVM, PSO


Download data is not yet available.

Article Details

How to Cite
KRISTIYANTI, Dinar Ajeng; NORMAH, Normah. Optimising the Particle Swam Optimazion Usage for Predicting Indonesia Presidential Election Result Period 2019-2024. SinkrOn, [S.l.], v. 4, n. 1, p. 32-38, sep. 2019. ISSN 2541-2019. Available at: <https://jurnal.polgan.ac.id/index.php/sinkron/article/view/10149>. Date accessed: 16 july 2020. doi: https://doi.org/10.33395/sinkron.v4i1.10149.
* Abstract viewed = 111 times PDF downloaded = 144 times *


Basari, A. S. H., Hussin, B., Ananta, I. G. P., & Zeniarja, J. (2013). Opinion mining of movie review using hybrid method of support vector machine and particle swarm optimization. Procedia Engineering, 53, 453–462. https://doi.org/10.1016/j.proeng.2013.02.059
Google Scholar

Buntoro, G. A. (2017). Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter. Integer Journal Maret, 1(1), 32–41. Retrieved from https://www.researchgate.net/profile/Ghulam_Buntoro/publication/316617194_Analisis_Sentimen_Calon_Gubernur_DKI_Jakarta_2017_Di_Twitter/links/5907eee44585152d2e9ff992/Analisis-Sentimen-Calon-Gubernur-DKI-Jakarta-2017-Di-Twitter.pdf
Google Scholar

Dani, W. (2016). PENGERTIAN, FUNGSI DAN SISTEM PEMILIHAN UMUM. Retrieved August 10, 2019, from Komisi Pemilihan Umum Daerah Istimewa Yogyakarta website: https://diy.kpu.go.id/web/2016/12/19/pengertian-fungsi-dan-sistem-pemilihan-umum/

Haddi, E., Liu, X., & Shi, Y. (2013). The role of text pre-processing in sentiment analysis. Procedia Computer Science, 17, 26–32. https://doi.org/10.1016/j.procs.2013.05.005
Google Scholar

Hadi, A. F., Bagus, D., & Hasan, M. (2017). Text Mining Pada Media Sosial Twitter Studi Kasus : Masa Tenang Pilkada Dki 2017 Putaran 2. Seminar Nasional Matematika Dan Aplikasinya, 21 Oktober 2017 Surabaya, Universitas Airlangga. Retrieved from http://math.fst.unair.ac.id/wp-content/uploads/2017/10/50-Dimas-Bagus__Sistem-Informasi_.pdf
Google Scholar

Hasan, A., Moin, S., Karim, A., & Shamshirband, S. (2018). Machine Learning-Based Sentiment Analysis for Twitter Accounts. Mathematical and Computational Applications, 23(1), 11. https://doi.org/10.3390/mca23010011
Google Scholar

Kristiyanti, D. A. (2015a). Analisis Sentimen Review Produk Kosmetik Melalui Komparasi Feature Selection. Konferensi Nasional Ilmu Pengetahuan Dan Teknologi (KNIT), 2(2), 74–81.
Google Scholar

Kristiyanti, D. A. (2015b). Analisis Sentimen Review Produk Kosmetik Menggunakan Algoritma Support Vector Machine Dan Particle Swarm Optimization Sebagai. Seminar Nasional Inovasi & Tren (SNIT) 2015 “Peluang Dan Tantangan Indonesia Dalam Menyikapi Afta 2015,” 134–141. Retrieved from http://lppm.bsi.ac.id/SNIT2015/BidangA/A22-134-141_2015-SNIT-Dinar Ajeng Kristiyanti_ ALGORITMA SUPPORT VECTOR.pdf
Google Scholar

Kristiyanti, D. A., Umam, A. H., Wahyudi, M., Amin, R., & Marlinda, L. (2019). Comparison of SVM Naïve Bayes Algorithm for Sentiment Analysis Toward West Java Governor Candidate Period 2018-2023 Based on Public Opinion on Twitter. 2018 6th International Conference on Cyber and IT Service Management, CITSM 2018, (Citsm), 1–6. https://doi.org/10.1109/CITSM.2018.8674352
Google Scholar

Kristiyanti, D. A., & Wahyudi, M. (2017). Feature selection based on Genetic algorithm, particle swarm optimization and principal component analysis for opinion mining cosmetic product review. 2017 5th International Conference on Cyber and IT Service Management, CITSM 2017. https://doi.org/10.1109/CITSM.2017.8089278
Google Scholar

Lazuardi, G. (2019). Aktivitas Medsos Sebabkan Tensi Panas di Pemilu 2019. Retrieved July 20, 2019, from Tribunnews.com website: https://www.tribunnews.com/nasional/2019/05/21/pengamat-aktivitas- medsos-sebabkan-tensi-panas-di-pemilu-2019

Normah, N. (2019). Naïve Bayes Algorithm For Sentiment Analysis Windows Phone Store Application Reviews. SinkrOn, 3(2), 13. https://doi.org/10.33395/sinkron.v3i2.242
Google Scholar

Parimala, R., & Nallaswamy, R. (2012). Feature Selection using a Novel Particle Swarm Optimization and It’s Variants. International Journal of Information Technology and Computer Science, 4(5), 16–24. https://doi.org/10.5815/ijitcs.2012.05.03
Google Scholar

Ramadhani, R. A., Indriani, F., & Nugrahadi, D. T. (2017). Comparison of Naive Bayes smoothing methods for Twitter sentiment analysis. 2016 International Conference on Advanced Computer Science and Information Systems, ICACSIS 2016, 287–292. https://doi.org/10.1109/ICACSIS.2016.7872720
Google Scholar

Sarlan, A., Nadam, C., & Basri, S. (2015). Twitter sentiment analysis. Conference Proceedings - 6th International Conference on Information Technology and Multimedia at UNITEN: Cultivating Creativity and Enabling Technology Through the Internet of Things, ICIMU 2014, (November 2014), 212–216. https://doi.org/10.1109/ICIMU.2014.7066632
Google Scholar

Saubani, A. (2019). KPU Tetapkan Dua Pasangan Calon Pilpres. 2019.

Wahyudi, M., & Kristiyanti, D. A. (2016). Sentiment analysis of smartphone product review using support vector machine algorithm-based particle swarm optimization. Journal of Theoretical and Applied Information Technology, 91(1), 189–201.
Google Scholar

Yan, P., & Jiao, M. H. (2016). An improved particle swarm optimization for global optimization. Proceedings of the 28th Chinese Control and Decision Conference, CCDC 2016, 8, 2181–2185. https://doi.org/10.1109/CCDC.2016.7531347
Google Scholar