Application of Fuzzy Logic in Making Automatic Labeling Stamping

Main Article Content

Ondra Eka Putra
Corresponding Author:
Ondra Eka Putra

Copyright (C):
Ondra Eka Putra,


This research was conducted to create a labeling system on cardboard boxes with automatic stamping. Labeling is done based on height and weight of the cardboard so that stamping will be done according to the size and weight of the cardboard. The height of the cardboard is detected using an ultrasonic sensor and the weight of the cardboard is detected using a load cell sensor, and a stepper motor to move the cardboard label stamping. This research is based on artificial intelligence using mamdani method with fuzzy logic, so that all data can be processed properly. The height of the cardboard detected by the ultrasonic sensor is given a distance value of 10 cm to 45 cm with a value of rendah, sedang and tinggi. Cardboard weight detected by load cell sensor is given a weight value of 500 gr up to 1,500 gr with ringan,  sedang  and berat values. Stamping labels are driven by stepper motors which are given time values ​​of 5 s to 15 s with time values ​​of  sebentar, sedang, and lama After the ultrasonic sensor and the load cell detect the cardboard box, the conveyor belt moves to run the cardboard box by the power window motor, then if the cardboard box passes through the proximity sensor, the conveyor belt stops and the stepper motor moves to stamping the cardboard label box automatically. The label stamping system is controlled by using the Arduino Mega 2560 to work well.

Article Details

How to Cite
PUTRA, Ondra Eka. Application of Fuzzy Logic in Making Automatic Labeling Stamping. SinkrOn, [S.l.], v. 4, n. 1, p. 155-163, oct. 2019. ISSN 2541-2019. Available at: <>. Date accessed: 07 apr. 2020. doi:
* Abstract viewed = 92 times *


[1] G. S. Sandhu and K. S. Rattan, “Design of a neuro-fuzzy controller”, IEEE International Conference on Systems, Man, Cybern., 1997.

[2] Husein, A M. Model Manajemen Persediaan Berdasarkan Permintaan Menggunakan Teknik Fuzzy Mamdani. Jurnal Teknik Informatika Prima, ISSN 2088-6102, Vol 7, No 2, Oktober 2014.

[3] Awal, H., & Putra, O. E. (2018). Aplikasi Knowledge Base System dalam Perancangan Learning Machine. SinkrOn, 3(1), 1-7.

[4] Putra, O. E., & Febrianti, E. L. (2017). Analisa Jumlah Produksi Pada Industri Rumah Tangga Dengan Menggunakan Logika Fuzzy: Studi Kasus Ud Tempe Puji Kecamatan Bayang Kabupatern Pesisir Selatan. Sainstek: Jurnal Sains dan Teknologi, 8(2), 173-179.

[5] Putra, O. E. (2017). Aplikasi Artificial Inttelegence Pada Public Territory Room Berbasis Mikrokontroler (Study Kasus: Ruangan Perkuliahan Upi-Yptk Padang). Jurnal Teknologi Informasi dan Pendidikan, 10(1), 53-59.

[6] Buana, W. (2015). Penerapan Fuzzy Mamdani Untuk Sistem Pendukung Keputusan Pemilihan Telepon Seluler. Jurnal Edik Informatika.

[7] Zulfikar, W. B., Prasetyo, P. K., & Ramdhani, M. A. (2018, January). Implementation of mamdani fuzzy method in employee promotion system. In IOP Conference Series: Materials Science and Engineering (Vol. 288, No. 1, p. 012147). IOP Publishing.

[8] Sakti, I. (2014, November). Methodology of fuzzy logic with mamdani fuzzy models applied to the microcontroller. In 2014 The 1st International Conference on Information Technology, Computer, and Electrical Engineering (pp. 93-98). IEEE.