Application System for Identification of Surakarta Traditional Batik Images (SABATARA)

Main Article Content

Jani Kusanti Ramadhian Agus T.S
Corresponding Author:
Jani Kusanti
jani.kusanti@gmail.com

Copyright (C):
Jani Kusanti, Ramadhian Agus T.S,

Abstract

Surakarta Batik is a traditional cloth in Indonesia that has been designated as an intangible cultural heritage by the Ministry of Education and Culture. The Surakarta Batik Pattern has characteristics and has a story in each style. The method used affects the accuracy of each pattern in the Surakarta batik image. Image data used for training data are 100 image data with a size of 256 x 256 pixels, with test image data used as many as 20 image data. Improving the quality of the image using contrast stretching, the output is processed to separate objects with the background using adaptive thresholding. The obtained object is added by the canny process and calculated using the Gray Level Co-Occurrence Matrix to obtain the characteristics of each image. The characteristics used are four variables (energy, contrast, homogeneity, and correlation). The resulting variable is used as input to the classification using backpropagation. The test results obtained an accuracy rate of 95%, with an error rate of 0.05%.

Downloads

Download data is not yet available.

Article Details

How to Cite
KUSANTI, Jani; T.S, Ramadhian Agus. Application System for Identification of Surakarta Traditional Batik Images (SABATARA). SinkrOn, [S.l.], v. 4, n. 1, p. 5-12, sep. 2019. ISSN 2541-2019. Available at: <https://jurnal.polgan.ac.id/index.php/sinkron/article/view/10202>. Date accessed: 29 mar. 2020. doi: https://doi.org/10.33395/sinkron.v4i1.10202.
Section
Articles
* Abstract viewed = 99 times *

References

Alibeigi, M. (2015). A Robust Statistical Color Edge Detection for Noisy Images. SemanticScholar.
Google Scholar

Ambarwati, A. P. (2016). Segmentasi Citra Digital Menggunakan Thresholding Otsu untuk Analisa Perbandingan Deteksi Tepi. Annual Research Seminar 2016, (p. 216).
Google Scholar

Batik, S. (2015). Batik Fabric Atlanta with Special Cotton and Original Handmade. 2-5.

Bayu L.A.A., B. C. (2016). Makalah Budaya Nusantara Batik Vorstenlanden. Telkom University.

Brasilka, Y. (2015). KLASIFIKASI CITRA BATIK BESUREK MENGGUNAKAN JARINGAN SYARAF TIRUAN SELF ORGANIZING MAP ( SOM ). Jurnal Rekursif, 132-145.
Google Scholar

Budiman, F. (2017). Determination of SVM-RBF kernel space parameter to optimize accuracy value of Indonesian Batik images classification. Journal of Computer Science.

Cheong, M. (2018). Textile Recognition Using Tchebichef Moments of Co-occurrence Matrices Textile Recognition Using Tchebichef Moments of Co-occurrence Matrices.
Google Scholar

Handhayani, T. (2017). Comparison of Shallow and Deep Learning Models for Classification of Lasem Batik Patterns. Proceedings - 2017 1st International Conference on Informatics and Computational Sciences, ICICoS 2017.
Google Scholar

Hashem, H. F. (2009). Adaptive technique for human face detection using HSV color space and neural networks. National Radio Science Conference. IEEE.
Google Scholar

Hengky, S. (2014). Image Analysys: Performance Gaps of Batik Craft in Yogyakarta, Indonesia. Macrothink Institute, Business Management and Strategy, 127-138.
Google Scholar

I Made Dwi Putra Asana, I. M. (2017). Metode Contrast Stretching untuk Perbaikan Kualitas Citra Pada Proses Segmentasi Video. Teknologi Elektro, 1-6.
Google Scholar

Ida Nurhaida, H. W. (2016). Texture fusion for batik motif retrieval system. International Journal of Electrical and Computer Engineering (IJECE) , 3174-3187.
Google Scholar

Kasim, & Ahmad, A. (2017). Batik Classification with Artificial Neural Network Based on Texture-Shape Feature of Main Ornament. International Journal of Intelligent Systems and Applications, 55-65.
Google Scholar

Kurniawardhani, A. (2017). Efficient texture image retrieval of improved completed robust local binary pattern. International Conference on Advanced Computer Science and Information Systems, ICACSIS 2016.
Google Scholar

Kusanti, J., & Haris, N. A. (2018). Klasifikasi Penyakit Daun Padi Berdasarkan Hasil Ekstraksi Fitur GLCM Interval 4 Sudut. Jurnal Teknologi Informasi dan Komunikasi (JTIK), 1-6.
Google Scholar

Kusumaningtyas, R. F. (2009). Perlindungan Hak Cipta Atas Motif Batik Sebagai Warisan Budaya Bangsa ( Studi Terhadap Karya Seni Batik Tradisional Kraton Surakarta ).
Google Scholar

Meccasia, K. (2015). Klasifikasi Motif Batik Banyuwangi Menggunakan Metode Ekstraksi Ciri Wavelet Dan Metode Klasifikasi Fuzzy Logic. e-Proceeding of Engineering , (pp. 2760-2766).
Google Scholar

Minarno, A. E. (2016). Batik Image Retrieval Based on Enhanced Micro-Structure Descriptor. 2014 Asia-Pacific Conference on Computer Aided System Engineering, APCASE 2014.
Google Scholar

O’Rourke, J. (2017). Handbook of Discrete and Computational Geometry, Third Edition.

Padmo A.M, A. (2016). Segmentasi Citra Batik Berdasarkan Fitur Tekstur Menggunakan Metode Filter Gabor Dan K-Means Clustering. Jurnal Informatika.
Google Scholar

Pittsburgh, U. o. (2019, February 18). University of Library System. Retrieved from Citation Styles: APA, MLA, Chicago, Turabian, IEEE: APA 6th Edition: https://pitt.libguides.com/c.php?g=12108&p=64730

Purba, B. (2017). Aplikasi Perbaikan Kualitas Citra Hasil Penginderaan Jauh (Remote Sensing) Dengan Metode Contrast Stretching. Jurnal Times (Technology Informatics & Computer System), 26-36.

R, I. D. (2016). Klasifikasi Batik Menggunakan KNN Berbasis Wavelet . Seminar Nasional Teknologi Informasi dan Komunikasi 2016 (SENTIKA 2016) (2016) Yogyakarta.

Rahayuda, I. G. (2015). Texture Analysis on Image Motif of Endek Bali using K-Nearest Neighbor Classification Method. International Journal of Advanced Computer Science and Applications, 205-211.
Google Scholar

Rangkuti, A. H. (2015). Batik image classification using treeval and treefit as decision tree function in optimizing content based batik image retrieval. Procedia Computer Science, (pp. 577-583).
Google Scholar

Sari, Y. (2018). Classification of Coastal and Inland Batik using GLCM and Canberra Distance. AIP Conference Proceedings.
Google Scholar

Sari, Y. (2018). Klasifikasi Pengenalan Motif Batik Berbasis Image Retrieval. Jukung Jurnal Teknik Lingkungan, 27-33.

Sianturi, F. A. (2015). Penerapan Metode Contrast Stretching Untuk Peningkatan Kualitas Citra Bidang Biomedis. Jurnal Matik Penusa (Jurnal Manajemen dan Informatika Pelita Nusantara), 42-47.
Google Scholar

Sinaga, A. S. (2017). Implementasi Teknik Thresholding Pada Segmentasi Citra Digital. Jurnal Mantik Penusa (Jurnal Manajemen Dan Informatika Pelita Nusantara), 48-51.
Google Scholar

Syahrin, A. (2015). The Batik Motif.

WHO. (2004). Developing health management information systems: a practical guide for developing countries. Dev. Heal. Manag. Inf. Syst. a Pract. Guid. Dev. Ctries., 60.

Wicaksono, A. Y. (2017). Modified Convolutional Neural Network Architecture for Batik Motif Image Classification. IPTEK Journal of Science, 26-30.
Google Scholar

Yohanes Gultom, R. J. (2018). Batik Classification Using Deep Convolutional Network Transfer Learning. Jurnal Ilmu Komputer dan Informasi (Journal of a Science and Information), 59-66.
Google Scholar

Yunari, N. (2018). Extraction Gray Level Co-occurrence Matrix ( GLCM ) and Learning Vector Quantization ( LVQ ). Journal of Telecommunication, Electronic and Computer Engineering, 67-71.