Comparison of Machine Learning Classification Algorithms in Sentiment Analysis Product Review of North Padang Lawas Regency

Main Article Content

Yennimar Yennimar Reyhan Achmad Rizal
Corresponding Author:
Yennimar Yennimar |

Copyright (C):
Yennimar Yennimar, Reyhan Achmad Rizal


The growth of SMEs in Indonesia, which has increased by 6% every year, is driven by continued growth by many parties, including the government and private institutions that often conduct business coaching and assistance. Problems that are often encountered are the lack of willingness of MSME business practitioners to apply information technology and the internet, besides that most of them live in rural areas with very limited internet access and many are not yet digital-literate, adequate digital technology utilization capabilities and the will of business people For SMEs to understand customer needs, a service that is consistent with standard service procedures will give a good impression and pay attention to customer feedback. This research was conducted by collecting data on MSME products obtained from the North Padang Lawas District Trade Industry Office followed by the development of a Paluta Market website as a marketplace for media promotion and marketing of MSME products in North Padang Lawas by applying a sentiment analysis approach using machine learning classification algorithm to produce product rating values based on public opinion of MSME products contained on the website, in addition the system is able to classify consumer comment data on MSME products from various sources from the umkm web, so that it becomes useful information for MSME businesses especially in North Padang Lawas Regency and the community at large. The results of the application of sentiment analysis of a product on the Paluta Market website can be used as a reference in improving service and product quality, so as to create a variety of new opportunities that are profitable for MSME businesses.

Keyword: Sentiment Analysis, MSME, North Padang Regency, Product Riview, K-Nearest Neighbor


Download data is not yet available.

Article Details

How to Cite
YENNIMAR, Yennimar; RIZAL, Reyhan Achmad. Comparison of Machine Learning Classification Algorithms in Sentiment Analysis Product Review of North Padang Lawas Regency. SinkrOn, [S.l.], v. 4, n. 1, p. 268-273, oct. 2019. ISSN 2541-2019. Available at: <>. Date accessed: 17 july 2020. doi:
* Abstract viewed = 50 times PDF downloaded = 37 times *

References Keempat
Republik Indonesia. 2008. Undang – Undang No. 20 Tahun 2008 tentang Usaha Mikro, Kecil, Menengah. Sekretariat Negara. Jakarta. diakses pada tanggal 25 Juli 2018

Chen, H., 2012. The Impact of Comments and Recommendation System on Online Shopper Buying Behaviour. Journal of Networks.

Basari, A.S.H., Hussin, B., Ananta, I.G.P., Zeniarja, J. 2013. Opinion Mining of Movie Review using Hybrid Method of Support Vector Machine and Particle Swarm Optimization. Procedia Engineering 53 (2013) 453 – 462.

Saifinnuha, A.Z., 2015, Penerapan Sentimen Analisis pada Twitter Berbahasa Indonesia untuk Mendapatkan Rating Program Televisi Menggunakan Metode Support Vecotr Machine.

Indriati, Ridok, A., 2016, Sentiment analysis For Review Mobile Applications Using Neighbor Method Weighted K-Nearest Neighbor (NWKNN). Journal of Environmental Engineering & Sustainable Technology.

Hanggara, S., Akhriza, M. TB., Husni, M., 2017, Aplikasi Web Untuk Analisis Sentimen Pada Opini Produk Dengan Metode Naive Bayes Classifier, Seminar Nasional Inovasi Dan Aplikasi Teknologi Di Industri, ISSN 2085-4218.

Nurjanah, W. E., Perdana, R. S., Fauzi, M. A., 2017, Analisis Sentimen Terhadap Tayangan Televisi Berdasarkan Opini Masyarakat pada Media Sosial Twitter menggunakan Metode K-Nearest Neighbor dan Pembobotan Jumlah Retweet, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN: 2548-964X, Vol. 1, No. 12, pp 1750-1757.

Rofiqoh, U., Perdana, S.P., Fauzi, M.A., 2017. Analisis Sentimen Tingkat Kepuasan Pengguna Penyedia Layanan Telekomunikasi Seluler Indonesia Pada Twitter Dengan Metode Support Vector Machine dan Lexicon Based Features. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer.

Muljono, Artanti, D. P., Syukur, A., Prihandono, A., De Rosal, D., Setiadi, M., 2018, Analisa Sentimen Untuk Penilaian Pelayanan Situs Belanja Online Menggunakan Algoritma Naïve Bayes, Konferensi Nasional Sistem Informasi, pp 165-170.

Haryanto, D. J., Muflikhah, L., Fauzi, M. A., 2018, Analisis Sentimen Review Barang Berbahasa Indonesia Dengan Metode Support Vector Machine Dan Query Expansion, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN: 2548-964X, Vol. 2, No. 9, pp. 2909-2916.

Lutfi, A. A., Permanasari, A. E., Fauziati, S., 2018, Sentiment Analysis in the Sales Review of Indonesian Marketplace by Utilizing Support Vector Machine, Journal of Information Systems Engineering and Business Intelligence, Vol. 4, No. 1, pp. 57-64.

Magdalena, H., Irawadi, S., 2018, Optimasi AHP dalam mendukung UMKM di Bangka Belitung dalam memanfaatkan E-Commerce, Jurnal Optimasi Sistem Industri, ISSN (Online) 2442-8795, DOI: 10.25077/josi.v17.n1.p16-25.2018.

Ernawati, S., Wati, S., 2018, Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Review Agen Travel, jurnal khatulistiwa informatika, vol. VI, no. 1, e-ISSN: 2579-633X, pp. 58-63.

Taufik, A., 2018, Komparasi Algoritma Text Mining Untuk Klasifikasi Review Hotel, Jurnal Teknik Komputer AMIK BSI, Volume IV No. 2, E-ISSN: 2550-0120, pp. 112-118.

Liu, B., 2012, Sentiment Analysis and Opinion Mining. Morgan & Claypool Publisher.

Refaeilzadeh, P., Tang, L., & Liu, H. 2009. Cross Validation Editors: M. Tamer dan Ling Liu Encyclopedia of Database Systems. New York: Springer.

Ulwan, M. N. 2016. Pattern Recognition pada Unstructured Data Teks Menggunakan Support Vector Machine dan Association. Skripsi: Program Studi Statistika Universitas Islam Indonesia.

Han, J., Kamber, M., & Pei, J. (2012). Data Mining Concepts and Techniques. Waltham: Morgan Kaufmann.

Informatikalogi. 2016. Pembobotan Kata atau Term Weighting TF-IDF. Retrieved Juli 2018, from