Apriori Algorithm On Car Rental Analysis With The Most Popular Brands
DOI:
10.33395/sinkron.v4i2.10506Keywords:
Apriori Algorithms, Analysis, BrandsAbstract
Nowadays, vehicle rental has become a common function for companies that have busy operational activities. Every company in carrying out operational activities requires a vehicle that is always there when needed. PT. Agung Solusi Trans is a vehicle rental company that rents various vehicle brands commonly used by customers to rent vehicles. In addition, PT. Agung Solusi Trans is also difficult to get updated information regarding the level of sales per period. Therefore, we need a decision support system and a method that can be used to design a business strategy that can provide an efficient and effective information, namely data mining using the a priori algorithm association method. The researcher specializes in taking only vehicle types as research material by selecting fifteen brands, including Agya, Yaris, Sienta, Calya, Avanza, Innova, Rush, Vios, Altis, Camry, Fortuner, Alphard, Hi Ace, Voxy, and Hilux. In analyzing the data, the writer uses a priori algorithm calculation by testing the hypothesis of two variables between the value of support and the value of confidence. After that, apriori algorithm is calculated using Tanagra. Based on the analysis done by the author, that the brands most sought after by customers are Calya, Avanza, Hilux. From these results can be used by PT. Agung Solusi Trans to prepare vehicle brands that are widely leased by customers and increase brand inventory.
Downloads
References
Badrul, M. (2015). Prediksi Hasil Pemilu Legislatif Dengan Menggunakan Algoritma K-Nearest Neighbor. Jurnal Pilar Nusa Mandiri, XI(2), 152–160. http://ejournal.nusamandiri.ac.id/index.php/pilar/article/view/424/374
Badrul, M. (2016). Algoritma Asosiasi Dengan Algoritma Apriori Untuk Analisa Data Penjualan. None, 12(2), 121–129. https://media.neliti.com/media/publications/227549-algoritma-asosiasi-dengan-algoritma-apri-f4245cc8.pdf
Halimi, I., Azhar, Y., & Marthasari, G. I. (2019). Prediksi Harga Emas Menggunakan Univariate Convolutional Neural Network. Repositor, 1(2), 105–116. https://doi.org/10.22219/repositor.v1i2.612
Handrianto, Y., & Farhan, M. (2019). C.45 Algorithm for Classification of Causes of Landslides. SinkrOn, 4(1), 120. https://doi.org/10.33395/sinkron.v4i1.10154
Irfiani, E. (2019). Application of Apriori Algorithms to Determine Associations in Outdoor Sports Equipment Stores. SinkrOn, 3(2), 218. https://doi.org/10.33395/sinkron.v3i2.10089
Kanti, S., & Indrajit, R. E. (2017). Implementasi Data Mining Penjualan Handphone Oppo Store Sdc Tanggerang Dengan Algoritma Appriori. Implementasi Data Mining Penjualan Handphone Oppo Store Sdc Tanggerang Dengan Algoritma Appriori, November, 1–2.
Listriani, D., Setyaningrum, A. H., & Eka, F. (2016). Penerapan Metode Asosiasi Menggunakan Algoritma Apriori Pada Aplikasi Analisa Pola Belanja Konsumen (Studi Kasus Toko Buku Gramedia Bintaro). Jurnal Teknik Informatika, 9(2), 120–127. https://doi.org/10.15408/jti.v9i2.5602
Santoso, H., Hariyadi, I. P., & Prayitno. (2016). Data Mining Analisa Pola Pembelian Produk Dengan Menggunakan Metode Algoritma Apriori. Teknik Informatika, 1, 19–24. http://ejournal.stikom-db.ac.id/index.php/mediasisfo/article/view/233/220
Septavia, I., Gunadhi, R. E., & Kurniawati, R. (2014). Sistem Informasi Penyewaan Mobil Berbasis Web di GTS Mobil Bandung. 13(1999), 10–24. https://jurnal.sttgarut.ac.id/index.php/algoritma/article/view/247/411
Sugiyono. (2015). Metode penelitian pendekatan kuantitatif, kualitatif dan R&DNo Title. In Metode penelitian pendekatan kuantitatif, kualitatif dan R&D (pp. 80–84). Alfabeta.