Sentiment Analysis Of Full Day School Policy Comment Using Naïve Bayes Classifier Algorithm
DOI:
10.33395/sinkron.v5i1.10564Keywords:
Sentiment Analysis; Naïve Bayes Classifier; Lexicon Based MethodAbstract
Sentiment analysis is an important and emerging research topic today. Sentiment analysis is done to see opinion or tendency of opinion to a problem or object by someone, whether it tends to have a negative or positive view. The main purpose of this study is to find out public sentiment on Full Day school's policy comment from Facebook Page of Kemendikbud RI and to find out the performance of the Naïve Bayes Classifier Algorithm. In this study, the authors used the Naïve Bayes Classifier algorithm with trigram and quad ram character feature selection with two different training data models and labeling of training data using Lexicon Based method in the classification of public sentiment toward the Full day school policy. The result of this research shows that public negative sentiment toward Full Day School policy is more than positive or neutral sentiment. The highest accuracy value is the Naïve Bayes Classifier algorithm with trigram feature selection of 300 data training models with a value of 80%. The greater of training data and feature selection used on the Naïve Bayes Classifier Algorithm affected the accurate result.
Downloads
References
Rachmat, A., & Lukito, Y. (2016). Klasifikasi Sentimen Komentar Politik dari Facebook Page Menggunakan Naive Bayes. Jurnal Informatika Dan Sistem Informasi Universitas Ciputra, 2(2), 26–34.
Pamungkas, D. S., Setiyanto, N. A., & Dolphina, E. (2015). Analisis Sentiment Pada Sosial Media Twitter Menggunakan Naive Bayes Classifier Terhadap Kata Kunci "Kurikulum 2013’. Jurnal Teknologi Informasi, 14(4), 299–314.
Sentiaji, A. R., & Bachtiar, A. M. (2014). Analisis Sentimen Terhadap Acara Televisi Berdasarkan Opini Publik. Jurnal Ilmiah Komputer Dan Informatika (KOMPUTA), 2(1), 55–60.
Burdi, F., Setianingrum, A. H., &Hakiem., N., (2017), Application of the Naive Bayes Method to a Decision Support System to Provide Discounts (Case Study: PT. Bina Usaha Teknik), in Proceedings - 6th International Conference on Information and Communication Technology for the Muslim World, ICT4M 2016, no. November, pp. 281–285.
Nurhuda, F., & Sihwi, S. W. (2014). Analisis Sentimen Masyarakat terhadap Calon Presiden Indonesia 2014 berdasarkan Opini dari Twitter Menggunakan Metode Naive ayes Classifier. ITSmart: Jurnal Ilmiah Teknologi Dan Informasi, 2(2), 35–42.
Matulatuwa, F. M., Studi, P., Sistem, M., Informasi, F. T., Kristen, U., & Wacana, S. (2017). Text Mining dengan Metode Lexicon Based untuk Sentiment Analysis Pelayanan PT . POS Indonesia Melalui Media Sosial Twitter Jurnal, (September).
Islami, A. M. N. (2016). Implementasi Program Pendidikan Full Day School di Muhammadiyah Karanglo Kecamatan Cilondok Kabupaten Banyumas. IAIN Purwokerto.
Chandra, D. N., Indrawan, G., & Sukajaya, I. N. (2016). Klasifikasi Berita Lokal Radar Malang Menggunakan Metode Naïve Bayes Dengan Fitur N-Gram. Jurnal Ilmiah Teknologi Dan Informasi ASIA (JITIKA), 10(1), 11–19. Retrieved from http://lp3m.asia.ac.id/wp-content/uploads/2016/02/2.-jurnal-Denny.pdf
Wahyudi, D., Susyanto, T., & Nugroho, D. (2017). Implementasi dan Analisis Algoritma Stemming Nazief & Adriani dan Porter pada Dokumen Berbahasa Indonesia. Jurnal Ilmiah Sinus, 15(2), 49–56. Retrieved from p3m.sinus.ac.id/jurnal/index.php/e-jurnal_SINUS/article/download/305/pdf
Madani, S. A., Kazmi, J., & Mahlknecht, S., (2010) Wireless sensor networks: modeling and simulation, Discret. Event Simulations, no. 2004, pp. 1–16, 2010.
Aulia, A., Khairani, D., Hakiem, N., & Durachman, Y., (2017) Development of a Retrieval System for Al Hadith in Bahasa ( Case Study : Hadith Bukhari ),” in 5th International Conference on Cyber and IT Service Management, 2017, no. August 2017, pp. 549–553.
Indrayuni, E., Wahyudi, M., Informasi, S., Selatan, J., Komputer, I., & Selatan, J. (2015). Penerapan Charachter N-Gram Untuk Sentiment Review Hotel Menggunakan Algoritma Naive Bayes. In Konfrensi Nasional Ilmu Pengetahuan dan Teknologi (KNIT) (pp. 88–93). Bekasi.
P. B. Awachate, P. B., & Kshirsagar, V.P., (2007), Improved Twitter Sentiment Analysis Using N Gram Feature Selection and Combinations, Int. J. Adv. Res. Comput. Commun. Eng. ISO, vol. 3297, no. 9, pp. 154–157.