Data Mining Model For Designing Diagnostic Applications Inflammatory Liver Disease


  • Omar Pahlevi Universitas Bina Sarana Informatika, Indonesia
  • Amrin Amrin Universitas Bina Sarana Informatika, Indonesia




C4.5, naïve bayes, k-Nearest Neighbor, confusion matrix, ROC Curva


Hepatitis is an infectious disease that is a public health problem that affects morbidity, mortality, public health status, life expectancy, and other socio-economic impacts. Early diagnosis of hepatitis is very important so that it can be treated and treated quickly. In this study, the authors will apply and compare several data mining classification methods, including the C4.5 algorithm, Naïve Bayes, and k-Nearest Neighbor to diagnose hepatitis, then compare which of the three methods is the most accurate. Based on the results of measuring the performance of the three models using the Cross Validation, Confusion Matrix and ROC Curve methods, it is known that the C4.5 method is the best method with an accuracy of 70.99% and an under the curva (AUC) value of 0.950, then the k-Nearest Neighbor method with accuracy of 67.19% and the value under the curve (AUC) 0.873, then the naïve Bayes method with an accuracy rate of 66.14% and a value under the curve (AUC) of 0.742.



GS Cited Analysis


Download data is not yet available.


Amrin, A. (2018a). Aplikasi Diagnosa Penyakit Tuberculosis Menggunakan Algoritma Data Mining. Jurnal Paradigma, XX(2), 91–97.
Amrin, A. (2018b). Aplikasi Diagnosa Penyakit Tuberculosis Menggunakan Algoritma Naive Bayes. Jurikom, 5(5), 498–502.
Gorunescu, F. (2011). Data Mining: Concepts, Models, and Techniques. Verlag Berlin Heidelberg: Springer.
Han, J., & Kamber, M. (2006). Data Mining: Concepts and Techniques. In Soft Computing (Vol. 54).
Handrianto, Y., & Farhan, M. (2019). C.45 Algorithm for Classification of Causes of Landslides. SinkrOn, 4(1), 120–127.
Hannan, A., Manza, R., & Remteke, R. (2010). Generalized Regression Neural Network and Radial Basis Function for Heart Disease diagnosis. International Journal of Computer Application (0975-8887), 7(13), 7–13.
Karlik, B. (2011). Hepatitis Disease Diagnosis Using Backpropagation and the Naive Bayes Classifiers. Turkey : Journal of Science and Technology, 1(1).
Kemenkes RI. (2017). Situasi Penyakit Hepatisis B Di Indonesia. Jakarta: Info Datin Kemenkes RI.
Kumar, D. S., Sathyadevi, G., & Sivanesh, S. (2011). Decision Support System for Medical Diagnosis Using Data Mining. India : International Journal of Computer Science Issues, 8(1).
Kumar, V., Sharaty, V., & Devi, G. (2012). Hepatitis Prediction Model based on Data Mining Algorithm and Optimal Feature Selection to Improve Predictive Accuracy. Vellore : International Journal of Computer Applications (0975-8887), 51(19).
Kusrini, & Luthfi, E. . (2009). Algoritma Data Mining. Yogyakarta: Andi Publishing.
Neshat, M., & Yaghoobi, M. (2009). Designing a Fuzzy Expert System of Diagnosing the Hepatitis B Intensity Rate and Comparing it with Adaptive Neural Network Fuzzy System. Proceeding of the World Congress on Engineering and Computer Science 2009,Vol II, WCECS 2009, ISBN:978-988-18210-2-7, 1–6.
Pahlevi, O., Sugandi, A., & Sintawati, I. D. (2018). Penerapan Algoritma Apriori Dalam Pengendalian Kualitas Produk. SinkrOn, 3(1), 272–278.
Prayoga, N. D. (2018). Sistem Diagnosis Penyakit Hati Menggunakan Metode Naïve Bayes. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(8), 2666–2671.
Sumpena, Akbar, Y., Nirat, & Henky, M. (2019). Comparison of C4 . 5 Algorithm and Naïve Bayes for Last Information on ICU Patients. SinkrOn, 4(1), 88–94.
Vercellis, C. (2009). Business Intelligent: Data Mining and Optimization for Decision Making. Southern Gate, Chichester, West Sussex: John Willey & Sons, Ltd.
Wu, X., & Kumar, V. (2009). The Top Ten Algorithms in Data Mining. Boca Raton: CRC Press.


Crossmark Updates

How to Cite

Pahlevi, O., & Amrin, A. (2020). Data Mining Model For Designing Diagnostic Applications Inflammatory Liver Disease. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 5(1), 51-57.