Period Study Accuracy Prediction using Sequential Minimal Optimization Algorithm
DOI:
10.33395/sinkron.v5i1.10621Keywords:
classification; data mining; period study; prediction; smo;Abstract
The study period is quite influential in the assessment of a university. The imbalance in the ratio of students to lecturers causes the quality of teaching and learning to decline, this is because one lecturer has to manage many students. Acquisition of accreditation scores and society's assumptions about higher education are also strongly influenced by the number of student graduations on time. Therefore, the prediction of the accuracy of the study period is needed as consideration for related parties to solve the problem of student learning delay. Sources of data in this study were taken from a database stored at the University of Surakarta, namely the Temporary Achievement Index with data of 209 instances and 5 attributes. The proposed method in this study is the Sequential Minimal Optimization algorithm. The validation method uses k-fold Cross-Validation with a value of K = 10. This method is compared with other methods such as naive Bayes, KNN, and Decision Tree. The results of this study, the proposed method can predict the accuracy of the study period quite well with the acquisition of accuracy of 88.52%. However, several other methods such as NaiveBayes obtained better accuracy of 90.91%, KNN of 91.86%, and Decision Tree of 96.65%. From the results of the comparison of these methods, the Decision Tree obtained the highest accuracy value. In future studies, researchers aim to enrich features in the prediction process. These features are related to student activities, such as student backgrounds, social activities, additional activities on campus and off-campus, and other aspects.
Downloads
References
BAN-PT. (2019). Instrumen Akreditasi Perguruan Tinggi. April, 7–9.
Garner, S. R. (1995). WEKA: The Waikato Environment for Knowledge Analysis. Proc New Zealand Computer Science Research Students Conference, 57–64.
Hamsa, H., Indiradevi, S., & Kizhakkethottam, J. J. (2016). Student Academic Performance Prediction Model Using Decision Tree and Fuzzy Genetic Algorithm. Procedia Technology, 25, 326–332. https://doi.org/10.1016/j.protcy.2016.08.114
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and Information Technologies, 13(1), 61–72. https://doi.org/10.2478/cait-2013-0006
Kurniawan, H., & Nurjoko. (2016). Aplikasi Datamining Untuk Memprediksi Tingkat Kelulusan Mahasiswa Menggunakan Algoritma Apriori Di Ibi Darmajaya Bandar Lampung. 2(01), 79–93.
Mashlahah, S. (2013). Prediksi Kelulusan Mahasiswa Menggunakan Metode Decision Tree Dengan Penerapan Algoritma C4.5.
Mauriza, A. F., & Nugroho, Y. S. (2014). Implementasi Data Mining untuk Memprediksi Kelulusan Mahasiswa Fakultas Komunikasi dan Informatika UMS Menggunakan Metode Naive Bayes [Universitas Muhammadiyah Surakarta]. https://doi.org/10.1038/132817a0
Mutiara, I. dan A. (2015). Penerapan K-Optimal Pada Algoritma Knn Untuk Prediksi Kelulusan Tepat Waktu Mahasiswa Program Studi Ilmu Komputer Fmipa Unlam Berdasarkan Ip Sampai Dengan Semester 4. Klik - Kumpulan Jurnal Ilmu Komputer, 2(2), 159–173. https://doi.org/10.20527/KLIK.V2I2.26
Prasetyo, T. F., Susandi, D., & Widianingrum, I. S. (2016). Prediksi Kelulusan Mahasiswa Pada Perguruan Tinggi Kabupaten Majalengka Berbasis Knowledge Based System. Seminar Nasional Telekomunikasi Dan Informatika | Vol: | Issue : | 2016, May.
Putri, R. P. S., & Waspada, I. (2018). Penerapan Algoritma C4.5 pada Aplikasi Prediksi Kelulusan Mahasiswa Prodi Informatika. Khazanah Informatika: Jurnal Ilmu Komputer Dan Informatika, 4(1), 1. https://doi.org/10.23917/khif.v4i1.5975
Rohmawan, E. (2018). Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Desicion Tree Dan Artificial Neural Network. Jurnal Ilmiah Matrik, 20(1), 21–30.
Salmu, S., & Solichin, A. (2017). Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu Menggunakan Naïve Bayes : Studi Kasus UIN Syarif Hidayatullah Jakarta Prediction of Timeliness Graduation of Students Using Naïve Bayes : A Case Study at Islamic State University Syarif Hidayatullah Jakarta. April, 701–709.
Santosa, B. (2011). Tutorial Support Vector Machine 1 Ide Dasar Support Vector Machine. 1–23. https://doi.org/10.1016/S0924-0136(01)00706-3
Saputra, A. Y., & Primadasa, Y. (2018). Penerapan Teknik Klasifikasi Untuk Prediksi Kelulusan Mahasiswa Menggunakan Algoritma K-Nearest Neighbor. Techno.Com, 17(4), 395–403. https://doi.org/10.33633/tc.v17i4.1864
Susanto, E. S., & Fatta, H. Al. (2018). Informatika Universitas Amikom Yogyakarta Menggunakan Metode K-Nearest Neighbor. Jurnal Teknologi Informasi, XIII, 67–72.
Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining. In Encyclopedia of Ecology, Five-Volume Set (Third Edit). Elsevier. https://doi.org/10.1016/B978-008045405-4.00153-1
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2020 Hendri Noviyanto, Bayu Mukti
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.