Implementation of the Bayes Method for diagnosing tuberculosis

Authors

  • Nina Sari Universitas Labuhan Batu
  • Volvo Sihombing Universitas Labuhan Batu
  • Deci Irmayani Universitas Labuhanbatu

DOI:

10.33395/sinkron.v5i2.10903

Abstract

Tuberculosis is an infection caused by acid-resistant bacilli or an infectious disease that can attack anyone through the air is also a dangerous infectious disease besides it is also a chronic or chronic disease that can strike between the ages of 15-35 years. The purpose of this study is to help prevent tuberculosis by implementing an expert system using the Bayes method. The method used in this research includes identifying problems faced in the medical world for treating tuberculosis, analyzing the problem, then formulating the problem and applying an expert system with the Bayes method to solve the problems that are obtained, the next stage is designing an application as needed, testing the application with the aim of knowing the success rate of the system. The implementation of the Bayes method in diagnosing tuberculosis is found. The result is that the calculation process using the Bayes method is based on the symptoms experienced by the patient. It can be seen that the patient is "most likely" to have pulmonary tuberculosis with a confidence value of 0.64 or 64%. From the results of the research conducted, it can be concluded that in diagnosing Tuberculosis by using the Bayes method expert system, it can help medical parties handle cases more quickly in terms of recognizing the symptoms of Tuberculosis so that people quickly know the disease they are experiencing.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Aji, A. H., Furqon, M. T., & Widodo, A. W. (2018). Sistem Pakar Diagnosa Penyakit Ibu Hamil Menggunakan Metode Certainty Factor ( CF ). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(5), 2127–2134. http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1556

Amin, Z., & Bahar, A. (2014). Tuberkulosis Paru. In Buku Ajar Ilmu Penyakit Dalam.

Cubfritua, C., Sianturi, F. A., & Gea, A. (2018). Sistem Pakar Untuk Mendiagnosa Pertumbuhan Gigi Balita Dengan Menggunakan Metode Dempster Shaper. JURNAL ARMADA INFORMATIKA. https://doi.org/10.36520/jai.v2i2.28

Dewi, P. S., Lestari, R. D., & Lestari, R. T. (2015). SISTEM PAKAR DIAGNOSIS PENYAKIT IKAN KOI DENGAN METODE BAYES. Komputa : Jurnal Ilmiah Komputer Dan Informatika. https://doi.org/10.34010/komputa.v4i1.2404

Gustina, D., & Chandra, Y. I. (2015). Aplikasi Sistem Pakar Untuk Mendiagnosa Penyakit Paru Pada Anak Menggunakan Metode Rapid Application Development (RAD). Jurnal UMJ.

Manalu, E., Sianturi, F. A., & Manalu, M. R. (2017). Penerapan Algoritma Naive Bayes Untuk Memprediksi Jumlah Produksi Barang Berdasarkan Data Persediaan Dan Jumlah Pemesanan Pada Cv . Papadan Mama Pastries. Mantik Penusa, 1(2), 16–21. http://e-jurnal.pelitanusantara.ac.id/index.php/mantik/article/view/257

Putu, D., & Dewi, S. (2016). Sistem Pakar Diagnosa Penyakit Jantung dan Paru dengan Fuzzy Logic dan Certainty Factor. Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi).

Saleh, A. (2015). Implementasi Metode Klasifikasi Naïve Bayes Dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga. Creative Information Technology Journal.

Syahputra, T., & Halim, J. (2019). Sistem Pakar Untuk Mendiagnosa Penyakit Menular Seksual ( HIV / AIDS ) Dengan Menggunakan Metode Case Based Reasoning ( CBR ). Jurnal Sains Dan Komputer (SAINTIKOM).

Downloads


Crossmark Updates

How to Cite

Nina Sari, Volvo Sihombing, & Deci Irmayani. (2021). Implementation of the Bayes Method for diagnosing tuberculosis . Sinkron : Jurnal Dan Penelitian Teknik Informatika, 5(2), 325-331. https://doi.org/10.33395/sinkron.v5i2.10903