Segmentation of Mango Fruit Image Using Fuzzy C-Means

Authors

  • Linda Marlinda STMIK Nusa Mandiri Jakarta
  • Muhamad Fatchan Universitas Pelita Bangsa
  • Widiyawati Widiyawati STMIK Bani Saleh
  • Faruq Aziz Universitas Nusa Mandiri
  • Wahyu Indrarti Bina Sarana Informatika

DOI:

10.33395/sinkron.v5i2.10933

Keywords:

Clustering; Fuzzy C Means; Image; Mango; Segmentation

Abstract

Mango contains about 20 vitamins and minerals such as iron, copper, potassium, phosphorus, zinc, and calcium. The freshness of the ripe mango will taste sweet. The level of ripeness of the mango fruit can be seen from the texture of the skin and skin color. Ripe mangoes have a bright, fragrant color and a smooth skin texture. The problem found in mango segmentation is that the image of the mango fruit is influenced by several factors, such as noise and environmental objects. In measuring the maturity of mangoes traditionally, it can be seen from image analysis based on skin color. The mango peel segmentation process is needed so that the classification or pattern recognition process can be carried out better. The segmented mango image will read the feature extraction value of an object that has been separated from the background. The procedure on the image that has been analyzed will analyze the pattern recognition process. In this process, the segmented image is divided into several parts according to the desired object acquisition. Clustering is a technique for segmenting images by grouping data according to class and partitioning the data into mango datasets. This study uses the Fuzzy C Means method to produce optimal results in determining the clustering-based image segmentation. The final result of Fuzzy C-based mango segmentation processing means that the available feature extraction value or equal to the maximum number of iterations (MaxIter) is 31 iterations, error (x) = 0.00000001, and the image computation testing time is 2444.913636

GS Cited Analysis

Downloads

Download data is not yet available.

References

Andika, T. H., & Hafiz, A. (2018). Analisis Perbandingan Segmentasi Citra Menggunakan Metode K-Means dan Fuzzy C-Means. Seminar Nasional Teknologi Dan Bisnis 2018, 237–246.

Bagus, C., & Imron, M. (2018). Klasifikasi Buah Mangga Berdasarkan Tingkat Kematangan Menggunakan Least-Squares Support Vector Machine. Explore IT : Jurnal Keilmuan Dan Aplikasi Teknik Informatika, 10(2), 1–8. https://doi.org/10.35891/explorit.v10i2.1255

Bhargava, A., & Bansal, A. (2018). Fruits and vegetables quality evaluation using computer vision: A review. Journal of King Saud University - Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2018.06.002

C-, F. (2015). Implementasi Algoritma Fuzzy C Means Dan Statistical Region Merging Pada Segmentasi Citra. 9–10.

Hardiyanto, I., Purwananto, Y., Kom, S., Kom, M., & Soelaiman, R. (2012). Implementasi Segmentasi Citra dengan Menggunakan Metode Generalized Fuzzy C- Means Clustering Algorithm with Improved Fuzzy Partitions. Teknik Pomits, 1(1), 1–5.

Jia, X., Lei, T., Du, X., Liu, S., Meng, H., & Nandi, A. K. (2020). Robust Self-Sparse Fuzzy Clustering for Image Segmentation. IEEE Access, 8, 146182–146195. https://doi.org/10.1109/ACCESS.2020.3015270

Kaswar, A. B., Palopo, U. C., Morfologi, O., & Pendahuluan, I. (2018). itra buah mengkudu membentuk klaster hyperellipsoid pada ruang fitur. 8, 13–20.

Lei, X., & Ouyang, H. (2019). Image segmentation algorithm based on improved fuzzy clustering. Cluster Computing, 22, 13911–13921. https://doi.org/10.1007/s10586-018-2128-9

Lv, J., Ni, H., Wang, Q., Yang, B., & Xu, L. (2019). A segmentation method of red apple image. Scientia Horticulturae, 256(March), 108615. https://doi.org/10.1016/j.scienta.2019.108615

Mahardika, F. (2019). Penerapan Segmentasi Warna pada Gambar di Media Sosial dengan Algoritma Fuzzy K-Means Cluster. Simetris : Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 10(2), 631–638.

Rosyani, P., & Saprudin, S. (2020). Deteksi Citra Bunga Menggunakan Analisis Segmentasi Fuzzy C-Means dan Otsu Threshold. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 20(1), 29–36. https://doi.org/10.30812/matrik.v20i1.715

Siswanto, & Utama, G. P. (2017). Segmentasi Pada Citra Buah Mangga Menggunakan Aplikasi Matlab. Bit, 14(2), 9–17.

soffiana agustin, eko prasetyo. (2011). Klasifikasi jenis pohon mangga gadung dan curut berdasarkan tesktur daun. 58–64.

Veling, P. S. (2019). Mango Disease Detection by using Image Processing. International Journal for Research in Applied Science and Engineering Technology, 7(4), 3717–3726. https://doi.org/10.22214/ijraset.2019.4624

Wu, C., & Chen, Y. (2020). Adaptive entropy weighted picture fuzzy clustering algorithm with spatial information for image segmentation. Applied Soft Computing Journal, 86, 105888. https://doi.org/10.1016/j.asoc.2019.105888

Wu, C., & Liu, N. (2020). Suppressed robust picture fuzzy clustering for image segmentation. Soft Computing, 8(2015). https://doi.org/10.1007/s00500-020-05403-8

Xiong, J., Liu, Z., Chen, S., Liu, B., Zheng, Z., Zhong, Z., Yang, Z., & Peng, H. (2020). Visual detection of green mangoes by an unmanned aerial vehicle in orchards based on a deep learning method. Biosystems Engineering, 194, 261–272. https://doi.org/10.1016/j.biosystemseng.2020.04.006

Zhang, X., Jian, M., Sun, Y., Wang, H., & Zhang, C. (2020). Improving image segmentation based on patch-weighted distance and fuzzy clustering. Multimedia Tools and Applications, 79(1–2), 633–657. https://doi.org/10.1007/s11042-019-08041-x

Downloads


Crossmark Updates

How to Cite

Marlinda, L., Fatchan, M. ., Widiyawati , W. ., Aziz, F. ., & Indrarti, W. . (2021). Segmentation of Mango Fruit Image Using Fuzzy C-Means. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 5(2), 275-281. https://doi.org/10.33395/sinkron.v5i2.10933

Most read articles by the same author(s)