Segmentation of Mango Fruit Image Using Fuzzy C-Means
DOI:
10.33395/sinkron.v5i2.10933Keywords:
Clustering; Fuzzy C Means; Image; Mango; SegmentationAbstract
Mango contains about 20 vitamins and minerals such as iron, copper, potassium, phosphorus, zinc, and calcium. The freshness of the ripe mango will taste sweet. The level of ripeness of the mango fruit can be seen from the texture of the skin and skin color. Ripe mangoes have a bright, fragrant color and a smooth skin texture. The problem found in mango segmentation is that the image of the mango fruit is influenced by several factors, such as noise and environmental objects. In measuring the maturity of mangoes traditionally, it can be seen from image analysis based on skin color. The mango peel segmentation process is needed so that the classification or pattern recognition process can be carried out better. The segmented mango image will read the feature extraction value of an object that has been separated from the background. The procedure on the image that has been analyzed will analyze the pattern recognition process. In this process, the segmented image is divided into several parts according to the desired object acquisition. Clustering is a technique for segmenting images by grouping data according to class and partitioning the data into mango datasets. This study uses the Fuzzy C Means method to produce optimal results in determining the clustering-based image segmentation. The final result of Fuzzy C-based mango segmentation processing means that the available feature extraction value or equal to the maximum number of iterations (MaxIter) is 31 iterations, error (x) = 0.00000001, and the image computation testing time is 2444.913636
Downloads
References
Andika, T. H., & Hafiz, A. (2018). Analisis Perbandingan Segmentasi Citra Menggunakan Metode K-Means dan Fuzzy C-Means. Seminar Nasional Teknologi Dan Bisnis 2018, 237–246.
Bagus, C., & Imron, M. (2018). Klasifikasi Buah Mangga Berdasarkan Tingkat Kematangan Menggunakan Least-Squares Support Vector Machine. Explore IT : Jurnal Keilmuan Dan Aplikasi Teknik Informatika, 10(2), 1–8. https://doi.org/10.35891/explorit.v10i2.1255
Bhargava, A., & Bansal, A. (2018). Fruits and vegetables quality evaluation using computer vision: A review. Journal of King Saud University - Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2018.06.002
C-, F. (2015). Implementasi Algoritma Fuzzy C Means Dan Statistical Region Merging Pada Segmentasi Citra. 9–10.
Hardiyanto, I., Purwananto, Y., Kom, S., Kom, M., & Soelaiman, R. (2012). Implementasi Segmentasi Citra dengan Menggunakan Metode Generalized Fuzzy C- Means Clustering Algorithm with Improved Fuzzy Partitions. Teknik Pomits, 1(1), 1–5.
Jia, X., Lei, T., Du, X., Liu, S., Meng, H., & Nandi, A. K. (2020). Robust Self-Sparse Fuzzy Clustering for Image Segmentation. IEEE Access, 8, 146182–146195. https://doi.org/10.1109/ACCESS.2020.3015270
Kaswar, A. B., Palopo, U. C., Morfologi, O., & Pendahuluan, I. (2018). itra buah mengkudu membentuk klaster hyperellipsoid pada ruang fitur. 8, 13–20.
Lei, X., & Ouyang, H. (2019). Image segmentation algorithm based on improved fuzzy clustering. Cluster Computing, 22, 13911–13921. https://doi.org/10.1007/s10586-018-2128-9
Lv, J., Ni, H., Wang, Q., Yang, B., & Xu, L. (2019). A segmentation method of red apple image. Scientia Horticulturae, 256(March), 108615. https://doi.org/10.1016/j.scienta.2019.108615
Mahardika, F. (2019). Penerapan Segmentasi Warna pada Gambar di Media Sosial dengan Algoritma Fuzzy K-Means Cluster. Simetris : Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 10(2), 631–638.
Rosyani, P., & Saprudin, S. (2020). Deteksi Citra Bunga Menggunakan Analisis Segmentasi Fuzzy C-Means dan Otsu Threshold. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 20(1), 29–36. https://doi.org/10.30812/matrik.v20i1.715
Siswanto, & Utama, G. P. (2017). Segmentasi Pada Citra Buah Mangga Menggunakan Aplikasi Matlab. Bit, 14(2), 9–17.
soffiana agustin, eko prasetyo. (2011). Klasifikasi jenis pohon mangga gadung dan curut berdasarkan tesktur daun. 58–64.
Veling, P. S. (2019). Mango Disease Detection by using Image Processing. International Journal for Research in Applied Science and Engineering Technology, 7(4), 3717–3726. https://doi.org/10.22214/ijraset.2019.4624
Wu, C., & Chen, Y. (2020). Adaptive entropy weighted picture fuzzy clustering algorithm with spatial information for image segmentation. Applied Soft Computing Journal, 86, 105888. https://doi.org/10.1016/j.asoc.2019.105888
Wu, C., & Liu, N. (2020). Suppressed robust picture fuzzy clustering for image segmentation. Soft Computing, 8(2015). https://doi.org/10.1007/s00500-020-05403-8
Xiong, J., Liu, Z., Chen, S., Liu, B., Zheng, Z., Zhong, Z., Yang, Z., & Peng, H. (2020). Visual detection of green mangoes by an unmanned aerial vehicle in orchards based on a deep learning method. Biosystems Engineering, 194, 261–272. https://doi.org/10.1016/j.biosystemseng.2020.04.006
Zhang, X., Jian, M., Sun, Y., Wang, H., & Zhang, C. (2020). Improving image segmentation based on patch-weighted distance and fuzzy clustering. Multimedia Tools and Applications, 79(1–2), 633–657. https://doi.org/10.1007/s11042-019-08041-x
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2021 Linda Marlinda, Muhamad Fatchan, Widiyawati Widiyawati , Faruq Aziz, Wahyu Indrarti
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.