Data Mining using K-means method for feasibility selection of Non-cash food Assistance recipients in the Era of Covid-19

Authors

  • Rusdiansyah Rusdiansyah Bina Sarana Informatika University
  • Hendra Supendar Universitas Bina Sarana Informatika
  • Tuslaela Tuslaela Universitas Nusa Mandiri

DOI:

10.33395/sinkron.v6i1.11101

Keywords:

Social Assistance, COVID 19, K-Means Clustering, Data Mining

Abstract

All countries in the world are currently experiencing a severe economic crisis following the outbreak of the COVID-19 outbreak. In Indonesia, the Large-Scale Social Restriction (PSBB) policy is reported to have increased the number of poor people. Social assistance is a government program to improve the social welfare of the lower economic community. In carrying out the program, the central government and local governments coordinate with each other so that the program is right on target without any element of fraud. In the neighbourhood of Rukun Warga 001, Kelapa Dua Village, there are still obstacles in selecting the eligibility for social assistance recipients, namely Non-Cash Food Aid. The data on the poor are not in accordance with the actual conditions. In this study, to implementing data mining with the K-Means Algorithm. The K-Means Clustering algorithm is used to classify people who are classified as eligible to receive social assistance and those who are not entitled to receive social assistance. The data sample used is the data of Rukun Warga 001, Kelapa Dua Village. The results of this study indicate that cluster 1 with the appropriate category of receiving social assistance according to government programs in the Rukun Warga 001 neighbourhood of Kelapa Dua sub-district amounted to 13 families. And cluster 2 in the category of not eligible to receive social assistance amounted to 97 heads of families out of a total of 110 heads of families in RW 001.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Anggleni, A. (2018). IMPLEMENTASI KEBIJAKAN PROGRAM KARTU KELUARGA SEJAHTERA (KKS ) DALAM MENINGKATKAN KESEJAHTERAAN MASYARAKATMISKIN DI KELURAHAN SEKIP JAYA KECAMATAN KEMUNING KOTA PALEMBANG. Journal PPS UNISTI, 1(1), 24–39. https://doi.org/10.48093/jiask.v1i1.3

Bastian, A. (2018). PENERAPAN ALGORITMA K-MEANS CLUSTERING ANALYSIS PADA PENYAKIT MENULAR MANUSIA (STUDI KASUS KABUPATEN MAJALENGKA). Sistem Informasi, (1), 26–32.

Khoir, D. (2019). Penerapan Metode K-Means Pengelompokan Calon Penerima Bantuan Sosial di Desa Lemberang Endratul. 6(1), 1–9.

Marlina, D. (2018). Implementasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer Dan Teknologi Informasi, 4(2), 64. https://doi.org/10.24014/coreit.v4i2.4498

Nugraha, Y. R. A. (2021). IMPLEMENTASI ALGORITME SUPPORT VECTOR MACHINE UNTUK KLASIFIKASI PENYESUAIAN UANG KULIAH TUNGGAL TERDAMPAK PANDEMI COVID-19 (Studi Kasus: Universitas Siliwangi). Teknik Informatika Kaputama (JTIK), 5(2), 210–218.

Probosiwi, R. (2016). Pengangguran dan Pengaruhnya terhadap Tingkat Kemiskinan Unemployment and Its Inluence on Poverty Level. Jurnal Penelitian Kesejahteraan Sosial, 15(02), 89–100. Retrieved from file:///D:/Data Taufik/Artikel 2021/Proposal Penelitian/Artikel SMK Banten/1349-3931-1-SM (1).pdf

Sahril, S. (2021). ANALISIS KELAYAKAN PENERIMA BANTUAN COVID-19 MENGGUNAKAN METODE K–MEANS PADA KECAMATAN SAGULUNG KOTA BATAM. Comasie, 05(01).

Samsuri, D. (2018). PENGARUH SIKAP DAN MOTIVASI TERHADAP KINERJA KARYAWAN PADA MTsN TAKERAN KABUPATEN MAGETAN. Capital: Jurnal Ekonomi Dan Manajemen, 1(1), 49. https://doi.org/10.25273/capital.v1i1.2137

Sinukun, S. M. and R. S. (2018). Prediksi Tingkat Kemiskinan Provinsi Gorontalo Menggunakan Metode Gabungan K-Means dan Generalized Regression Neural Network. J. Energy, 10(2), 29–34.

Sunia. (2019). PENERAPAN DATA MINING UNTUK CLUSTERING DATA PENDUDUK MISKIN MENGGUNAKAN ALGORITMA K-MEANS Dina. Jurnal Ilmiah Mahasiswa Teknik Informatika, Vol 1 No 2(2016), 121–134.

Triana, L. (2018). PEMENUHAN GIZI KELUARGA MISKIN PENERIMA BANTAUAN PANGAN NON TUNA. In Puslit.Kemsos.Go.Id. Retrieved from https://puslit.kemsos.go.id/upload/post/files/09985082a75f0beda3a66388151acd84.pdf

Wicaksono, A. E. (2016). IMPLEMENTASI DATA MINING DALAM PENGELOMPOKAN DATA PESERTA DIDIK DI SEKOLAH UNTUK MEMPREDIKSI CALON PENERIMA BEASISWA DENGAN MENGGUNAKAN ALGORITMA K- MEANS (STUDI KASUS SMAN 16 BEKASI). Jurnal Teknologi Rekayasa, 21(3), 206–216. Retrieved from http://www.sman16bekasi.sch.id

Widaningsih, S. (2019). PERBANDINGAN METODE DATA MINING UNTUK PREDIKSI NILAI DAN WAKTU KELULUSAN MAHASISWA PRODI TEKNIK INFORMATIKA DENGAN ALGORITMA C4.5, NAÏVE BAYES, KNN, DAN SVM. Jurnal Tekno Insentif, 13(1), 16–25. https://doi.org/10.36787/jti.v13i1.78

Widiani, L. S. (2018). PENERAPAN MEDIA FILM SEBAGAI SUMBER BELAJAR UNTUK MENINGKATKAN KEMAMPUAN MENGOLAH INFORMASI SISWA DALAM PEMBELAJARAN SEJARAH. Factum: Jurnal Sejarah Dan Pendidikan Sejarah, 7(1), 123–132.

Yefni, D. (2019). PEMBERDAYAAN KAWASAN KUMUH MELALUI PROGRAM KOTA TANPA KUMUH (KOTAKU) KOTA PEKANBARU. Masyarakat Madani:, 4(2), 61. https://doi.org/10.24014/jmm.v4i2.8414

Zaluchu, S. E. (2020). STRATEGI PENELITIAN KUALITATIF DAN KUANTITATIF DI DALAM PENELITIAN AGAMA. JTeologi Injili Dan Pembinaan Warga Jemaat, 4, 28–38.

Downloads


Crossmark Updates

How to Cite

Rusdiansyah, R., Supendar, H. ., & Tuslaela, T. (2021). Data Mining using K-means method for feasibility selection of Non-cash food Assistance recipients in the Era of Covid-19 . Sinkron : Jurnal Dan Penelitian Teknik Informatika, 5(2B), 25-33. https://doi.org/10.33395/sinkron.v6i1.11101

Most read articles by the same author(s)

1 2 > >>