Design and Build Mini Digital Scale using Internet of Things
DOI:
10.33395/sinkron.v7i2.11345Keywords:
Weight measurement system, Hx711 module, LCD, NodeMCU ESP8266, MicrocontrollerAbstract
The weight measurement system is carried out manually using a manual scale. The existing weighing system is still considered inefficient because it takes a long time if it is done repeatedly and there are too many errors in its measurement. To overcome this, an electronic weighing device was designed using the NodeMCU ESP 8266 microcontroller as a controller and a load cell as a sensor. This journal presents the development of electronic weighing indicators for digital measurements. The purpose of this system is to read the measured weight in conventional analog form to digital form, achieving high precision in measurement and calibration. The components used in this research are Load Cell, Load Cell Hx711 amplifier, NodeMCU ESP 8266 microcontroller, and LCD module. In this study, a 4 kg load cell was used. The load cell sends the output signal of the measured mechanical weight to the Hx711 module which amplifies and sends the output to the NodeMCU microcontroller. The microcontroller calibrates the output signal with the help of the load cell amplifier module before sending the converted signal to digital form to the LCD module for display. The developed system has proven that digital electronic weighing systems can be low cost, miniature, discrete, and can take accurate readings without errors
Downloads
References
Ahmed, M. S. (2021). Designing of internet of things for real time system. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.03.527
Albertengo, G., Debele, F. G., Hassan, W., & Stramandino, D. (2019). On the performance of web services, google cloud messaging and firebase cloud messaging. Digital Communications and Networks, 6(1), 31–37. https://doi.org/10.1016/j.dcan.2019.02.002
Celik, F., Akkaya, A., & Leblebici, Y. (2021). A 32 Gb/s PAM-16 TX and ADC-Based RX AFE with 2-tap embedded analog FFE in 28 nm FDSOI. Microelectronics Journal, 108(October 2020), 104967. https://doi.org/10.1016/j.mejo.2020.104967
Cézar, K. L., Caldas, A. G. A., Caldas, A. M. A., Cordeiro, M. C. L., Dos Santos, C. A. C., Ochoa, A. A. V., & Michima, P. S. A. (2020). Development of a novel flow control system with arduino microcontroller embedded in double effect absorption chillers using the LiBr/H2O pair. International Journal of Refrigeration, 111, 124–135. https://doi.org/10.1016/j.ijrefrig.2019.11.014
Deepika, K., Usha, J., & Deepika, K. (2020). Implementation of Personnel Localization & Automation Network (PLAN) Using Internet of Things (IoT). Procedia Computer Science, 171(2019), 868–877. https://doi.org/10.1016/j.procs.2020.04.094
Dewantara, D., & Sasmoko, P. (2015). Alat Penghitung Berat Badan Manusia Dengan Standart Body Mass Index (Bmi) Menggunakan Sensor Load Cell Berbasis Arduino Mega 2560 R3. Gema Teknologi, 18(3), 100. https://doi.org/10.14710/gt.v18i3.21931
Held, T., Albrecht, M., Erlen, T., Fink, M., Heinsius, F. H., Motzko, C., Musiol, P., Schnier, C., Steinke, M., Wenzel, H. C., & Wiedner, U. (2021). An LED/LCD-based monitoring system for the P¯ANDA Electromagnetic Calorimeter. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 997(October 2020). https://doi.org/10.1016/j.nima.2021.165167
Hubbard, B. R., & Pearce, J. M. (2020). Open-source digitally replicable lab-grade scales. Instruments, 4(3). https://doi.org/10.3390/instruments4030018
Kashyap, M., Sharma, V., & Gupta, N. (2018). Taking MQTT and NodeMcu to IOT: Communication in Internet of Things. Procedia Computer Science, 132(Iccids), 1611–1618. https://doi.org/10.1016/j.procs.2018.05.126
Lapsomthop, W., Wongsirirax, N., Kititeerakol, A., & Sawangsri, W. (2019). Design and experimental investigation on 3- component force sensor in mini CNC milling machine. Materials Today: Proceedings, 17, 1931–1938. https://doi.org/10.1016/j.matpr.2019.06.232
Mikolajczyk, T., Fuwen, H., Moldovan, L., Bustillo, A., Matuszewski, M., & Nowicki, K. (2018). Selection of machining parameters with Android application made using MIT App Inventor bookmarks. Procedia Manufacturing, 22, 172–179. https://doi.org/10.1016/j.promfg.2018.03.027
Park, E., Lee, M. S., Kim, H. S., & Bahk, S. (2020). AdaptaBLE: Adaptive control of data rate, transmission power, and connection interval in bluetooth low energy. Computer Networks, 181(August), 107520. https://doi.org/10.1016/j.comnet.2020.107520
Salem, N., Alharbi, S., Khezendar, R., & Alshami, H. (2019). Real-time glove and android application for visual and audible Arabic sign language translation. Procedia Computer Science, 163, 450–459. https://doi.org/10.1016/j.procs.2019.12.128
Sheu, G. Y. (2019). aXBRL: Search of fraudulent XBRL instance documents with an Android app. SoftwareX, 9, 308–316. https://doi.org/10.1016/j.softx.2019.04.004
Udjaja, Y. (2018). EKSPANPIXEL BLADSY STRANICA: Performance Efficiency Improvement of Making Front-End Website Using Computer Aided Software Engineering Tool. Procedia Computer Science, 135, 292–301. https://doi.org/10.1016/j.procs.2018.08.177
Yandra, E. F., Lapanporo, B. P., & Jumarang, M. I. (2016). Rancang Bangun Timbangan Digital Berbasis Sensor Beban 5 Kg Menggunakan Mikrokontroler Atmega328. Positron, 6(1), 23–28. https://doi.org/10.26418/positron.v6i1.15924
Zhang, R., Yan, B., Guo, H. F., Zhang, Y. H., Hu, B., Yang, H. X., Wang, L. A., & Wang, Y. (2019). A new environmental monitoring system based on WiFi technology. Procedia CIRP, 83, 394–397. https://doi.org/10.1016/j.procir.2019.04.088
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2022 Bayu Yasa Wedha, Alessandro Benito Putra Bayu Wedha, Haryono Haryono
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.