Heavy-loaded Vehicles Detection Model Testing using Synthetic Dataset
DOI:
10.33395/sinkron.v7i2.11378Keywords:
Convolutional Neural Network, Resnet50, Pre-Trained, Overfitting, Loaded VehicleAbstract
Currently, many roads in Indonesia are damaged. This is due to the presence of large vehicles and large loads that often pass. The more omissions are carried out, the more damaged and severe the road is. The central government and local governments often carry out road repairs, but this problem is often a problem. Damaged roads are indeed many factors, one of which is the road load. The road load is caused by the number of vehicles that carry more than the specified capacity. There are many methods used to monitor roads for road damage. The weighing post is a means used by the government in conducting surveillance. This research is not a proposal to monitor the road, but this is only to create a model for the purpose of detecting heavily or lightly loaded vehicles. This research is to classify using Convolutional Neural Network (CNN) with pre-trained Resnet50. The model generated from the Convolutional Neural Network training process reaches above 90%. Generate Image deep learning algorithms such as the Generative Adversarial Network currently generate a lot of synthetic images. The testing dataset that will be used is generated from style transfer. The model is tested using a testing dataset from the generated style transfer. Style transfer is a method of generating images by combining image content with image styles. The model is pretty good at around 92% for training and 88% for testing, can it detect image style transfer? The Convolutional Neural Network model is said to be good if it is able to recognize the image correctly, considering that the accuracy of the model is very good. One of the reasons why the training model is good but still makes errors during testing, then the image dataset is overfitting
Downloads
References
ABDULFATTAH, M. E., NOVAMIZANTI, L., & RIZAL, S. (2021). Super Resolution pada Citra Udara menggunakan Convolutional Neural Network. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 9(1), 71. https://doi.org/10.26760/elkomika.v9i1.71
Arther Sandag, G., Waworundeng Universitas Klabat, J., Arnold Mononutu, J., & -Minahasa Utara, A. (2021). Identifikasi Foto Fashion Dengan Menggunakan Convolutional Neural Network (CNN). 202.62.11.57, 7(2), 2021. http://202.62.11.57/index.php/cogito/article/view/340
Das, S. K., Roy, P., & Mishra, A. K. (2022). DFU_SPNet: A stacked parallel convolution layers based CNN to improve Diabetic Foot Ulcer classification. ICT Express, xxxx, 4–8. https://doi.org/10.1016/j.icte.2021.08.022
Hua, C., Huynh-the, T., Kim, K., Yu, S., & Le-tien, T. (2019). Bimodal learning via trilogy of skip-connection deep networks for diabetic retinopathy risk progression identification. International Journal of Medical Informatics, 132(July), 103926. https://doi.org/10.1016/j.ijmedinf.2019.07.005
Kade Bramasta Vikana Putra, I Putu Agung Bayupati, & Dewa Made Sri Arsa. (2021). Klasifikasi Citra Daging Menggunakan Deep Learning dengan Optimisasi Hard Voting. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(4), 656–662. https://doi.org/10.29207/resti.v5i4.3247
Kaiming, H. Z. X. (2016). Deep Residual Learning for Image Recognition. EEE Computer Society Conference on Computer Vision and Pattern Recognition (2016) 2016-December 770-778. https://doi.org/https://doi.org/10.1109/CVPR.2016.90
Kazemzadeh, M., Hisey, C. L., Zargar-shoshtari, K., & Xu, W. (2022). Deep convolutional neural networks as a unified solution for Raman spectroscopy-based classification in biomedical applications. Optics Communications, 510(October 2021), 127977. https://doi.org/10.1016/j.optcom.2022.127977
Kim, Y. H., Nam, S. H., Hong, S. B., & Park, K. R. (2022). GRA-GAN: Generative adversarial network for image style transfer of Gender, Race, and age. Expert Systems with Applications, 198(March), 116792. https://doi.org/10.1016/j.eswa.2022.116792
Lee, S., Park, B., & Kim, A. (2019). Deep Learning based Object Detection via Style-transferred Underwater Sonar Images. IFAC-PapersOnLine, 52(21), 152–155. https://doi.org/10.1016/j.ifacol.2019.12.299
Niswati, Z., Hardatin, R., Muslimah, M. N., & Hasanah, S. N. (2021). Perbandingan Arsitektur ResNet50 dan ResNet101 dalam Klasifikasi Kanker Serviks pada Citra Pap Smear. Faktor Exacta, 14(3), 160. https://doi.org/10.30998/faktorexacta.v14i3.10010
Peng, Y., Zhang, L., Liu, S., Wu, X., Zhang, Y., & Wang, X. (2019). Dilated Residual Networks with Symmetric Skip Connection for image denoising. Neurocomputing, 345, 67–76. https://doi.org/10.1016/j.neucom.2018.12.075
Qiu, D., Cheng, Y., & Wang, X. (2021). Progressive U-Net residual network for computed tomography images super-resolution in the screening of COVID-19. Journal of Radiation Research and Applied Sciences, 14(1), 369–379. https://doi.org/10.1080/16878507.2021.1973760
Sandhopi, Lukman Zaman P.C.S.W, & Yosi Kristian. (2020). Identifikasi Motif Jepara pada Ukiran dengan Memanfaatkan Convolutional Neural Network. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 9(4), 403–413. https://doi.org/10.22146/jnteti.v9i4.541
Sunario Megawan, & Wulan Sri Lestari. (2020). Deteksi Spoofing Wajah Menggunakan Faster R-CNN dengan Arsitektur Resnet50 pada Video. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 9(3), 261–267. https://doi.org/10.22146/.v9i3.231
Talo, M. (2019). Automated classification of histopathology images using transfer learning. Artificial Intelligence in Medicine, 101, 101743. https://doi.org/10.1016/j.artmed.2019.101743
Thiodorus, G., Prasetia, A., Ardhani, L. A., & Yudistira, N. (2021). Klasifikasi citra makanan/non makanan menggunakan metode Transfer Learning dengan model Residual Network. Teknologi, 11(2), 74–83. https://doi.org/10.26594/teknologi.v11i2.2402
Wang, S., Xia, X., Ye, L., & Yang, B. (2021). Automatic detection and classification of steel surface defect using deep convolutional neural networks. Metals, 11(3), 1–23. https://doi.org/10.3390/met11030388
Zhang, H., Pu, Y., Nie, R., Xu, D., Zhao, Z., & Qian, W. (2021). Multi-modal image synthesis combining content-style adaptive normalization and attentive normalization. Computers and Graphics (Pergamon), 98, 48–57. https://doi.org/10.1016/j.cag.2021.04.030
Zhao, J., Hu, L., Dong, Y., Huang, L., Weng, S., & Zhang, D. (2021). A combination method of stacked autoencoder and 3D deep residual network for hyperspectral image classification. International Journal of Applied Earth Observation and Geoinformation, 102, 102459. https://doi.org/10.1016/j.jag.2021.102459
Zhu, X., Hu, H., Lin, S., & Dai, J. (2019). Deformable convnets V2: More deformable, better results. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June, 9300–9308. https://doi.org/10.1109/CVPR.2019.00953
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2022 Daniel Avian Karjadi, Bayu Yasa Wedha, Handri Santoso

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.