Fall Detection using Sensors on a Smartphone

Authors

  • Budi Priswanto Universitas Pradita, Tangerang, Indonesia
  • Haryono Haryono Universitas Pradita, Tangerang, Indonesia

DOI:

10.33395/sinkron.v7i2.11403

Keywords:

Gyroscope, Accelerometer, Flutter, Android, Internet of Things

Abstract

A work accident on a technician causes injury. When doing work, even though the technician is equipped with work safety, there are still factors that can cause accidents intentionally or unintentionally. The development of technology is now more advanced. Now the industrial revolution has reached the era of 4.0. Its progress is accompanied by information technology that is growing very rapidly. Many internets of things devices can already be used in everyday life. In today's life, the use of IoT devices has become a habit of today's modern society. For example, to travel using public transportation, there are many mobile apps that are connected to transportation providers. Including trade, the number of marketplaces has caused the growth of smartphones to be very fast. Smartphones are now equipped with many sensors, ranging from GPS sensors, wi-fi sensors, temperature sensors, and various sensors. Often the technicians in charge of climbing towers or heights are never caught by management or project leaders. Even though this causes losses both losses for technicians and losses for management. Therefore, how to monitor the technicians to be careful in carrying out their duties. Android smartphone devices have many sensors. Sensors in Android are used as a fall detection tool. By using Android sensors, the use of Internet of Thing sensors on smartphones will produce very useful monitoring tools. The use of Flutter framework as a medium for utilizing the accelerometer sensor and gyroscope sensor as a fall detection tool. This study aims to create a prototype of a fall detection application system.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Anshori, I., Mufiddin, G. F., Ramadhan, I. F., Ariasena, E., Harimurti, S., Yunkins, H., & Kurniawan, C. (2022). Design of smartphone-controlled low-cost potentiostat for cyclic voltammetry analysis based on ESP32 microcontroller. Sensing and Bio-Sensing Research, 36(December 2021), 100490. https://doi.org/10.1016/j.sbsr.2022.100490

Apache Fondation. (n.d.). The Apache Software Foundation, Apache Tomcat. https://tomcat.apache.org/

Baş Seyyar, M., Çatak, F. Ö., & Gül, E. (2018). Detection of attack-targeted scans from the Apache HTTP Server access logs. Applied Computing and Informatics, 14(1), 28–36. https://doi.org/10.1016/j.aci.2017.04.002

Chen, C., & Zhao, L. (2020). The effect of thermal-induced noise on doubly-coupled-ring optical gyroscope sensor around exceptional point. Optics Communications, 474(April), 126108. https://doi.org/10.1016/j.optcom.2020.126108

Chen, H., Lachaud, K., & Zhou, W. (2022). The sales effect of “Free App of the Day” on Amazon Appstore: An empirical study. Digital Business, 2(2), 100020. https://doi.org/10.1016/j.digbus.2021.100020

Correa-Caicedo, P. J., Barranco-Gutiérrez, A. I., Guerra-Hernandez, E. I., Batres-Mendoza, P., Padilla-Medina, J. A., & Rostro-González, H. (2021). An FPGA-based architecture for a latitude and longitude correction in autonomous navigation tasks. Measurement: Journal of the International Measurement Confederation, 182(June). https://doi.org/10.1016/j.measurement.2021.109757

Gunawan, A. A. S., Stevanus, V., Farley, A., Ngarianto, H., Budiharto, W., Tolle, H., & Attamimi, M. (2019). Development of smart trolley system based on android smartphone sensors. Procedia Computer Science, 157, 629–637. https://doi.org/10.1016/j.procs.2019.08.225

Gundala, S. S., Jakkampudi, C. S., Yadavalli, A., Vankadara, R., & Panda, S. K. (2021). Ionospheric total electron content and scintillations characteristics from GPS signal observations at a low latitude station. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.12.1041

Kareem, Z. H., Ramli, K. N. bin, Malik, R. Q., & Zahra, M. M. A. (2021). Mobile phone user behavior’s recognition using gyroscope sensor and ML algorithms. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.04.639

Kristensen, P. L., Olesen, L. G., Egebæk, H. K., Pedersen, J., Rasmussen, M. G., & Grøntved, A. (2022). Criterion validity of a research-based application for tracking screen time on android and iOS smartphones and tablets. Computers in Human Behavior Reports, 5. https://doi.org/10.1016/j.chbr.2021.100164

Kumar, S., & Singh, A. K. (2011). GPS derived ionospheric TEC response to geomagnetic storm on 24 August 2005 at Indian low latitude stations. Advances in Space Research, 47(4), 710–717. https://doi.org/10.1016/j.asr.2010.10.015

Kusuma, W. A., Sari, Z., Wibowo, H., Norhabibah, S., Ubay, S. N., & Fitriani, D. A. (2018). Monitoring walking devices for calorie balance in patients with medical rehabilitation needs. International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2018-October, 460–463. https://doi.org/10.1109/EECSI.2018.8752761

Long, L. (2022). Research on status information monitoring of power equipment based on Internet of Things. Energy Reports, 8, 281–286. https://doi.org/10.1016/j.egyr.2022.01.018

Marsa, M., & Syaryadi, M. (2019). Penerapan Wearable Device Untuk Mendeteksi Lansia Jatuh Pada Rumah Aceh. Jurnal Karya Ilmiah Teknik Elektro, 4(3), 12–18.

Paziewski, J., Fortunato, M., Mazzoni, A., & Odolinski, R. (2021). An analysis of multi-GNSS observations tracked by recent Android smartphones and smartphone-only relative positioning results. Measurement: Journal of the International Measurement Confederation, 175, 109162. https://doi.org/10.1016/j.measurement.2021.109162

Pratiwi, U., & Fatmaryanti, S. D. (2020). Development of Physics Teaching Media Using Speed Sensors as Speed Analysis in Realtime Based on Arduino to Remind Students’ Problem Solving Abilities. JIPF (Jurnal Ilmu Pendidikan Fisika), 5(3), 151. https://doi.org/10.26737/jipf.v5i3.1789

Singh Gehlot, K., & Jain, D. (2020). Biometric finger print based voting machine using ATmega328P microcontroller. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.11.087

Tsani, S. D., & Mulyadi, I. H. (2019). Sistem Pendeteksi Jatuh Wearable untuk Lanjut Usia Menggunakan Accelerometer dan Gyroscope. Journal of Applied Electrical Engineering, 3(2), 44–48. https://doi.org/10.30871/jaee.v3i2.1824

Tummalapalli, S., & Machavarapu, V. R. (2016). Managing Mysql Cluster Data Using Cloudera Impala. Procedia Computer Science, 85(Cms), 463–474. https://doi.org/10.1016/j.procs.2016.05.193

Yulastri, Madona, E., Irmansyah, M., & Nasution, A. (2020). Alat Deteksi Jatuh Berbiaya Murah Dengan Tracking Position Untuk Pasien Vertigo dan Sinkop. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(6), 9–11. https://doi.org/10.29207/resti.v4i6.2608

Downloads


Crossmark Updates

How to Cite

Priswanto, B., & Haryono, H. (2022). Fall Detection using Sensors on a Smartphone. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(2), 541-548. https://doi.org/10.33395/sinkron.v7i2.11403

Most read articles by the same author(s)