Measurement of Photosynthetic Pigment Content using Convolutional Neural Network
DOI:
10.33395/sinkron.v7i2.11414Abstract
Estimation of photosynthetic pigment levels from leaves can be done using conventional methods using laboratory equipment such as spectrophotometers and using digital image processing from leaf images with a computational model. In digital image processing methods, various models are used, such as neural network, CNN, and linear regression. Measurement of photosynthetic pigment levels using image processing methods uses color value data from image data as input to the model used. In this study, we will analyze the effect of various types of color space and inpaint preprocessing settings on the accuracy of the CNN model in measuring leaf photosynthetic pigment levels. The color space types being tested are 4 single color spaces RGB, HSV, LAB, and YCbCr, as well as 6 color combination spaces RGB+HSV, RGB+LAB, RGB+YCbCr, HSV+LAB, HSV+YCbCr, and LAB+YCbCr. The choice of the type of color space takes into account the phenomenon of color constancy and the characteristics of the color space on the lighting elements. In addition, image data is divided into two types, namely through inpaint preprocessing and not, so that in total there are 20 types of input data. After the CNN model training process with various types of color spaces and different preprocessing settings as input data, observations were made on the accuracy values, namely the training MAE and the validation MAE for each model. From 20 types of input data, 3 types of input data are obtained which are recommended as input data that provide the best model accuracy value based on MAE validation with values of 0.08761, 0.09252, and 0.09288. The three recommended input data from the sequence of accuracy values are RGB+LAB without inpaint, RGB with inpaint, and LAB+YCbCr without inpaint.
Downloads
References
Bezden, T., & Bacanin, N. (2019). Convolutional Neural Network Layers and Architectures. SINTEZA 2019: International Scientific Conference on Information Technology and Data Related Research, (January), 445–451. https://doi.org/10.15308/sinteza-2019-445-451
Bueno, G. E., Valenzuela, K. A., & Arboleda, E. R. (2020). Maturity classification of cacao through spectrogram and convolutional neural network. Jurnal Teknologi Dan Sistem Komputer, 8(3), 228–233. https://doi.org/10.14710/jtsiskom.2020.13733
Chou, S., Chen, B., Chen, J., Wang, M., Wang, S., Croft, H., & Shi, Q. (2020). Estimation of leaf photosynthetic capacity from the photochemical reflectance index and leaf pigments. Ecological Indicators, 110, 105867. https://doi.org/https://doi.org/10.1016/j.ecolind.2019.105867
Concepcion, R. S., Lauguico, S. C., Tobias, R. R., Dadios, E. P., Bandala, A. A., & Sybingco, E. (2020). Estimation of Photosynthetic Growth Signature at the Canopy Scale Using New Genetic Algorithm-Modified Visible Band Triangular Greenness Index. 2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS), 1–6. https://doi.org/10.1109/ARIS50834.2020.9205787
Dewi, C., Santoso, A., Indriati, I., Dewi, N. A., & Arbawa, Y. K. (2021). Evaluasi Performasi Ruang Warna pada Klasifikasi Diabetic Retinophaty Menggunakan Convolution Neural Network. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(3), 619. https://doi.org/10.25126/jtiik.2021834459
Fitriyah, H., & Maulana, R. (2021). Deteksi Gulma Berdasarkan Warna HSV dan Fitur Bentuk Menggunakan Jaringan Syaraf Tiruan. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(5), 929. https://doi.org/10.25126/jtiik.2021854719
Foster, D. H. (2011). Color constancy. Vision Research, 51(7), 674–700. https://doi.org/10.1016/j.visres.2010.09.006
Gunawan, I. K., Bayupati, I. P. A., Wibawa, K. S., Sukarsa, I. M., & Kurniawan, L. A. (2021). Indonesian Plate Number Identification Using YOLACT and Mobilenetv2 in the Parking Management System. JUITA: Jurnal Informatika, 9(1), 69. https://doi.org/10.30595/juita.v9i1.9230
Hurlbert, A. (2019). Challenges to color constancy in a contemporary light. Current Opinion in Behavioral Sciences, 30, 186–193. https://doi.org/10.1016/j.cobeha.2019.10.004
Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70–90. https://doi.org/https://doi.org/10.1016/j.compag.2018.02.016
Kim, H. K., Park, J. H., & Jung, H. Y. (2018). An Efficient Color Space for Deep-Learning Based Traffic Light Recognition. Journal of Advanced Transportation, 2018. https://doi.org/10.1155/2018/2365414
Kučerová, K., Henselová, M., Slováková, Ľ., & Hensel, K. (2019). Effects of plasma activated water on wheat: Germination, growth parameters, photosynthetic pigments, soluble protein content, and antioxidant enzymes activity. Plasma Processes and Polymers, 16(3), 1800131. https://doi.org/https://doi.org/10.1002/ppap.201800131
Morales, F., Ancín, M., Fakhet, D., González-Torralba, J., Gámez, A. L., Seminario, A., … Aranjuelo, I. (2020). Photosynthetic Metabolism under Stressful Growth Conditions as a Bases for Crop Breeding and Yield Improvement. Plants , Vol. 9. https://doi.org/10.3390/plants9010088
Nugroho, B., & Puspaningrum, E. Y. (2021). Kinerja Metode CNN untuk Klasifikasi Pneumonia dengan Variasi Ukuran Citra Input. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(3), 533. https://doi.org/10.25126/jtiik.2021834515
Odabas, M. S., Simsek, H., Lee, C. W., & İseri, İ. (2017). Multilayer Perceptron Neural Network Approach to Estimate Chlorophyll Concentration Index of Lettuce (Lactuca sativa L.). Communications in Soil Science and Plant Analysis, 48(2), 162–169. https://doi.org/10.1080/00103624.2016.1253726
Priyangka, A. A. J. V., & Kumara, I. M. S. (2021). Classification Of Rice Plant Diseases Using the Convolutional Neural Network Method. Lontar Komputer : Jurnal Ilmiah Teknologi Informasi, 12(2), 123. https://doi.org/10.24843/lkjiti.2021.v12.i02.p06
Sonobe, R., Miura, Y., Sano, T., & Horie, H. (2018). Monitoring Photosynthetic Pigments of Shade-Grown Tea from Hyperspectral Reflectance. Canadian Journal of Remote Sensing, 44(2), 104–112. https://doi.org/10.1080/07038992.2018.1461555
Tommy, T., Siregar, R., Elhanafi, A. M., & Lubis, I. (2021). Implementasi Color Quantization pada Kompresi Citra Digital dengan Menggunakan Model Clustering Berdasarkan Nilai Max Variance pada Ruang Warna RGB. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(6), 1099. https://doi.org/10.25126/jtiik.2021863490
Zhang, J., Zhang, D., Cai, Z., Wang, L., Wang, J., Sun, L., … Zhao, J. (2022). Spectral technology and multispectral imaging for estimating the photosynthetic pigments and SPAD of the Chinese cabbage based on machine learning. Computers and Electronics in Agriculture, 195, 106814. https://doi.org/https://doi.org/10.1016/j.compag.2022.106814
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2022 Imam Dwi Rezeki, Fitri Aini Nasution
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.