Forecasting Health Sector Stock Prices using ARIMAX Method
DOI:
10.33395/sinkron.v7i2.11418Abstract
In daily stock trading activities, stock prices can experience ups and downs. The rise and fall of stock prices occurs due to changes in supply and demand for these shares. The COVID-19 pandemic did not have a negative effect, instead it had a positive impact on stock prices in health companies. companies in the health sector experienced a fairly good profit of 10.46% in the fourth quarter of 2021. This fact made investors interested in buying shares in companies in the health sector in the hope of selling them when demand increased, resulting in doubled profits. Stock conditions continue to fluctuate every day, making investors need to pay attention and study the past data of the health sector company that will be selected before deciding to invest. Therefore, it is necessary to forecast stock prices in the health sector for the next several periods as a step in making investment decisions. The health sector companies that will be modeled are PT Kimia Farma (Persero) Tbk and PT Kalbe Farma Tbk. The method used in this study is the ARIMAX model. The test and analysis results show that based on the RMSE and MAPE values, the best model is ARIMAX(5,13) for PT Kalbe Farma Tbk shares with a MAPE value of 1% in in-sample data and 0.6% in out-sample data.
Downloads
References
Amanda, T. R., Ahmar, N., Sailendra, & Merawati, E. E. (2019). Dampak COVID-19 Terhadap Tren Sektoral Harga Saham Syariah di Indonesia. Fair Value : Jurnal Ilmiah Akuntansi Dan Keuangan, 1(2), 307–313. Retrieved from http://journal.uin-alauddin.ac.id/index.php/Iqtisaduna/article/view/20214
Arfan, A., & ETP, L. (2019). Prediksi Harga Saham di Indonesia Menggunakan Algoritma Long Short-Term Memory. SeNTIK, 3(1), 225–230.
Aziz, M. A. A., Kamaludin, A., & Pudjiastuti, S. (2020). PENGARUH INDEKS HARGA KONSUMEN, INFLASI, DAN BI RATE PADA INDEKS HARGA SAHAM SYARIAH SEKTOR KESEHATAN Malik. Iqtisadiya: Jurnal Ilmu Ekonomi Islam, 7(14), 61–74. Retrieved from https://journal.uinsgd.ac.id/index.php/iqtisadiya/article/view/10169
BPS. (2021). Pertumbuhan Ekonomi Indonesia Triwulan IV-2020. In www.bps.go.id. Retrieved from https://www.bps.go.id/pressrelease/2021/02/05/1811/ekonomi-indonesia-2020-turun-sebesar-2-07-persen--c-to-c-.html
Dash, R., & Dash, P. K. (2017). Chapter 25 - MDHS–LPNN: A Hybrid FOREX Predictor Model Using a Legendre Polynomial Neural Network with a Modified Differential Harmony Search Technique (P. Samui, S. Sekhar, & V. E. B. T.-H. of N. C. Balas, eds.). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-811318-9.00025-9
Du, Y. (2018). Application and analysis of forecasting stock price index based on combination of ARIMA model and BP neural network. 2018 Chinese Control And Decision Conference (CCDC), 2854–2857. https://doi.org/10.1109/CCDC.2018.8407611
Fadilah, W. R. U., Agfiannisa, D., & Azhar, Y. (2020). Analisis Prediksi Harga Saham PT. Telekomunikasi Indonesia Menggunakan Metode Support Vector Machine. Fountain of Informatics Journal, 5(2), 45. https://doi.org/10.21111/fij.v5i2.4449
Hossain, M. S., Ahmed, S., & Uddin, M. J. (2021). Impact of weather on COVID-19 transmission in south Asian countries: An application of the ARIMAX model. Science of The Total Environment, 761, 143315. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.143315
Jing, Q. L., Cheng, Q., Marshall, J. M., Hu, W. B., Yang, Z. C., & Lu, J. H. (2018). Imported cases and minimum temperature drive dengue transmission in Guangzhou, China: evidence from ARIMAX model. Epidemiology and Infection, 146(10), 1226–1235. https://doi.org/10.1017/S0950268818001176
Ling., A. S. C., Darmesah, G., Chong, K. P., & Ho, C. M. (2019). Application of ARIMAX Model to Forecast Weekly Cocoa Black Pod Disease Incidence. Mathematics and Statistics, 7(4), 29–40. https://doi.org/10.13189/ms.2019.070705
Ma, C. C. Y., & Iqbal, M. (1984). Statistical comparison of solar radiation correlations Monthly average global and diffuse radiation on horizontal surfaces. Solar Energy, 33(2), 143–148. https://doi.org/https://doi.org/10.1016/0038-092X(84)90231-7
Maricar, M. A. (2019). Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ. Jurnal Sistem Dan Informatika, 13(2), 36–45.
Purnama, J., & Juliana, A. (2019). Analisa Prediksi Indeks Harga Saham Gabungan Menggunakan Metode Arima. Cakrawala Management Business Journal, 2(2), 454. https://doi.org/10.30862/cm-bj.v2i2.51
Rusyida, W. Y., & Pratama, V. Y. (2020). Prediksi Harga Saham Garuda Indonesia di Tengah Pandemi Covid-19 Menggunakan Metode ARIMA. Square : Journal of Mathematics and Mathematics Education, 2(1), 73. https://doi.org/10.21580/square.2020.2.1.5626
Suyudi, M. A. D., Djamal, E. C., & Maspupah, A. (2019). Prediksi Harga Saham menggunakan Metode Recurrent Neural Network. Seminar Nasional Aplikasi Teknologi Informasi (SNATi), 33–38.
Untoro, A. B. (2020). Prediksi Harga Saham Dengan Menggunakan Jaringan Syaraf Tiruan. Jurnal Teknologi Informatika Dan Komputer, 6(2), 103–111. https://doi.org/10.37012/jtik.v6i2.212
Wei, W. (2006). Time Series Analysis: Univariate and Multivariate Methods, 2nd edition, 2006.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2022 Muhammad Aprilianto, Mila Nirmala Sari Hasibuan, Syaiful Zuhri Harahap
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.