Applying genetic algorithm for optimization income value


  • Ayu Febri Siagian Universitas Labuhanbatu, Indonesia
  • Gomal Juni Yanris Universitas Labuhanbatu, Indonesia
  • Sahat Parulian Sitorus Universitas Labuhanbatu, Indonesia




In this digital era, the use of information technology and internet technology cannot be separated from digital services. Starting from product promotion media, recording customer data, determining the amount of revenue from product sales, and optimizing the value of revenue. Sales of digital service products owned by PT. XYZ needs to be evaluated to find out which products are most in demand by customers from each product offering that has been made. Therefore we need a system to calculate revenue from the number of customers who use the product for further promotion. The object of this research focuses on optimizing the value of income at PT. XYZ of the products they market, the results of the object will be used as an evaluation to determine a new strategy in carrying out promotions for products that are less attractive to customers. The data used in this study is customer data for January 2017-December 2021. The method used in this study uses a genetic algorithm to determine the optimization of the revenue value. For the optimization results, the genetic algorithm went well, because it resulted in a smaller comparison of error values ​​compared to values ​​that were not optimized. The error value in January 2019 with a non-optimized value was 35,498.8 and the optimized value got an error value of 32,364.9. The results of this study are used as a sales evaluation to increase promotions on digital services that are less attractive to customers. In addition, the results of the application of this genetic algorithm method can provide a better solution to increase income in the next period.

GS Cited Analysis


Download data is not yet available.


Abd Elrehim, M. Z., Eid, M. A., & Sayed, M. G. (2019). Structural optimization of concrete arch bridges using Genetic Algorithms. Ain Shams Engineering Journal, 10(3), 507–516.

Al Rivan, M. E., Steven, S., & Tanzil, W. (2020). Optimasi Fuzzy C-Means dan K-Means Menggunakan Algoritma Genetika untuk Pengklasteran Dataset Diabetic Retinopathy. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 7(5), 993.

Alfarizi, M. G., Stanko, M., & Bikmukhametov, T. (2022). Well control optimization in waterflooding using genetic algorithm coupled with Artificial Neural Networks. Upstream Oil and Gas Technology, 9(March), 100071.

Ermatita. (2009). Analisis Optimasi Query Pada Data Mining. Jurnal Sistem Informasi (JSI), 1(1), 47–54. Retrieved from

Garcia, L. G., & Lôndero, V. (2021). A parameter optimizer based on genetic algorithm for the simulation of carbonate facies. Intelligent Systems with Applications, 12, 200057.

Istianto, Y., & ’Uyun, S. (2021). Klasifikasi Kebutuhan Jumlah Produk Makanan Customer menggunakan K-Means Clustering dengan Optimasi Pusat Awal Cluster Algoritma Genetika. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 8(5), 861.

Khan, A. H., Hossain, S., Hasan, M., Islam, M. S., Rahman, M. M., & Kim, J. H. (2022). Development of an optimized thermodynamic model for VVER-1200 reactor-based nuclear power plants using genetic algorithm. Alexandria Engineering Journal, 61(11), 9129–9148.

Khotimah, B. K., Syarief, M., Miswanto, & Suprajitno, H. (2021). Optimasi Bobot K-Means Clustering Untuk Mengatasi Optimization Weight of K-Means Clustering. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 8(4), 745.

Luo, X., Qian, Q., & Fu, Y. F. (2020). Improved Genetic Algorithm for Solving Flexible Job Shop Scheduling Problem. Procedia Computer Science, 166, 480–485.

Martins, T. M., & Neves, R. F. (2020). Applying genetic algorithms with speciation for optimization of grid template pattern detection in financial markets. Expert Systems with Applications, 147, 113191.

Primadani, L., Palgunadi, Y., & Harjito, B. (2015). Optimasi Produksi Menggunakan Algoritma Fuzzy Linear Programming (Studi Kasus : Produksi Tas UKM Cantik Souvenir). Jurnal Teknologi & Informasi ITSmart, 4(2), 63.

Sari, Y., Alkaff, M., Wijaya, E. S., Soraya, S., & Kartikasari, D. P. (2019). Optimasi Penjadwalan Mata Kuliah Menggunakan Metode Algoritma Genetika dengan Teknik Tournament Selection. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 6(1), 85.

Shehadeh, A., Alshboul, O., Tatari, O., Alzubaidi, M. A., & Hamed El-Sayed Salama, A. (2022). Selection of heavy machinery for earthwork activities: A multi-objective optimization approach using a genetic algorithm. Alexandria Engineering Journal, 61(10), 7555–7569.

Song, H., Cai, M., Cen, J., Xu, C., & Zeng, Q. (2022). Research on energy saving optimization method of electric refrigerated truck based on genetic algorithm. International Journal of Refrigeration, 137(June 2021), 62–69.

Wicaksono, S. A. (2019). Optimasi Sistem Penempatan Magang Menerapkan Algoritme Genetika. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 6(1), 17.

Zhang, K., Ma, H., Li, Q., Wang, D., Song, Q., Wang, X., & Kong, X. (2022). Thermodynamic analysis and optimization of variable effect absorption refrigeration system using multi-island genetic algorithm. Energy Reports, 8, 5443–5454.


Crossmark Updates

How to Cite

Siagian, A. F., Yanris, G. J. ., & Sitorus, S. P. . (2022). Applying genetic algorithm for optimization income value. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(2), 753-759.

Most read articles by the same author(s)

1 2 > >>