Superior Class to Improve Student Achievement Using the K-Means Algorithm

Authors

DOI:

10.33395/sinkron.v7i3.11458

Keywords:

Clustering; iterations; K-Means; Student, Superior Class

Abstract

The accumulation of new student data every year makes searching and processing data difficult, including selecting superior class students according to their talents and abilities. Therefore, the application of the K-Means Clustering data mining method is carried out to support decisions in grouping superior classes. The report card values ​​for each class were used as parameters with a data sample of 80 students and 3 clusters were taken which then resulted in the selection and distribution of superior classes. The purpose of the study was to classify students in the superior class so that they could improve student achievement at SMK Raksana 2 Medan. Results Based on the calculation of the variable distance at the initial centroid with a sample of 80 students and the third iteration, the WCV value is 360.9745 and the BCV value is 7.3575 with a ratio value of 0.0203. Each cluster, namely: Cluster 1 has 43 students including the superior class category. Cluster 2 has 18 students and Cluster 3 has 19 students. Clusters 2 and 3 are included in the regular class category with a total of 37 students. The web-based K-Means application can provide information and solutions needed by schools to classify and determine superior classes so that they can improve student achievement in schools. These results can be used by the school to analyze student achievement and can assist teachers in forming superior classes so as to motivate students to study harder.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Amalia, N. L. R., Supianto, A. A., Setiawan, N. Y., Zilvan, V., Yuliani, A. R., & Ramdan, A. (2021). Student Academic Mark Clustering Analysis and Usability Scoring on Dashboard Development Using K-Means Algorithm and System Usability Scale. Jurnal Ilmu Komputer Dan Informasi, 14(2), 137–143. https://doi.org/10.21609/jiki.v14i2.980.

Azaria Bella Bernissa, F. (2020). Implementasi Algoritma K-Means Untuk Menentukan Kelas Unggulan Pada Smpn 1 Bojong. EProsiding Sistem Informasi (POTENSI), 1(1), 128–135.

Desiani, A., Yahdin, S., & Rodiah, D. (2020). Prediksi Tingkat Indeks Prestasi Kumulatif Akademik Mahasiswa dengan Menggunakan Teknik Data Mining. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(6), 1237. https://doi.org/10.25126/jtiik.2020722493.

Eliyanto, J., & Surono, S. (2021). Distance Functions Study in Fuzzy C-Means Core and Reduct Clustering. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, 7(1), 118. https://doi.org/10.26555/jiteki.v7i1.20516.

Faesal, A., Muslim, A., Ruger, A. H., & Kusrini, K. (2020). Sentimen Analisis Terhadap Komentar Konsumen Terhadap Produk Penjualan Toko Online Menggunakan Metode K-Means. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 19(2), 207–213. https://doi.org/10.30812/matrik.v19i2.640.

Hakim, L. (2021). Manajemen Program Kelas Unggulan untuk Meningkatkan Citra Madrasah Tsanawiyah 1 Kabupaten Madiun. Southeast Asian Journal of Islamic Education Management, 2(1), 1–14. https://doi.org/10.21154/sajiem.v2i1.37.

Hardianti. siti, Sinawati, & Praseptian M, D. (2018). Implementasi Clustering dengan Metode Minimum Spanning Tree Untuk Pengelompokkan siswa berdasarkan nilai hasil studi. Journal of Big Data Analytic and Artificial Intelligence, 4(1), 23–28.

Hossain, M. Z., Akhtar, M. N., Ahmad, R. B., & Rahman, M. (2019). A dynamic K-means clustering for data mining. Indonesian Journal of Electrical Engineering and Computer Science, 13(2), 521–526. https://doi.org/10.11591/ijeecs.v13.i2.pp521-526.

Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447–459. https://doi.org/10.11591/ijeecs.v9.i2.pp447-459.

Hutagalung, J., & Sonata, F. (2021). Penerapan Metode K-Means Untuk Menganalisis Minat Nasabah Asuransi. Jurnal Media Informatika Budidarma, 5(3), 1187–1194. https://doi.org/10.30865/mib.v5i3.3113.

Hutagalung, J., Ginantra, N. L. W. S. R., Bhawika, G. W., Parwita, W. G. S., Wanto, A., & Panjaitan, P. D. (2021). COVID-19 Cases and Deaths in Southeast Asia Clustering using K-Means Algorithm. Journal of Physics: Conference Series, 1783(1). https://doi.org/10.1088/1742-6596/1783/1/012027

Kusuma, A. S., & Aryati, K. S. (2019). Sistem Informasi Akademik Serta Penentuan Kelas Unggulan Dengan Metode Clusttering Dengan Algoritama K-Means Di Smp Negeri 3 Ubud. Jurnal Sistem Informasi Dan Komputer Terapan Indonesia (JSIKTI), 1(3), 143–152. https://doi.org/10.33173/jsikti.29.

Monalisa, S., & Kurnia, F. (2019). Analysis of DBSCAN and K-means algorithm for evaluating outlier on RFM model of customer behaviour. Telkomnika (Telecommunication Computing Electronics and Control), 17(1), 110–117. https://doi.org/10.12928/TELKOMNIKA.v17i1.9394.

Nasyuha, A. H., Jama, J., Abdullah, R., Syahra, Y., Azhar, Z., Hutagalung, J., & Hasugian, B. S. (2021). Frequent pattern growth algorithm for maximizing display items. Telkomnika (Telecommunication Computing Electronics and Control), 19(2), 390–396. https://doi.org/10.12928/TELKOMNIKA.v19i2.16192.

Primanda, R. P., Alwi, A., & Mustikasari, D. (2021). Data Mining Seleksi Siswa Berprestasi Untuk Menentukan Kelas Unggulan Menggunakan Metode K-Means Clustering (Studi Kasus di MTS Darul Fikri ). Komputek, 5(1), 88. https://doi.org/10.24269/jkt.v5i1.686.

Puspitasari, N., Widians, J. A., & Setiawan, N. B. (2020). Customer segmentation using bisecting k-means algorithm based on recency, frequency, and monetary (RFM) model. Jurnal Teknologi Dan Sistem Komputer, 8(2), 78–83. https://doi.org/10.14710/jtsiskom.8.2.2020.78-83.

Riana, D., Rahayu, S., Hadianti, S., Frieyadie, F., Hasan, M., Karimah, I. N., & Pratama, R. (2022). Identifikasi Citra Pap Smear RepoMedUNM dengan Menggunakan K-Means Clustering dan GLCM. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(1), 1–8. https://doi.org/10.29207/resti.v6i1.3495.

Salbinda, V., & Handayani, R. I. (2022). CLUSTERING OF CLOTHING SALES DATA USING K-MEANS METHOD. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(2), 314–320. https://doi.org/https://doi.org/10.33395/sinkron.v7i2.11244 e-ISSN.

Saputra, E. A., & Nataliani, Y. (2021). Analisis Pengelompokan Data Nilai Siswa untuk Menentukan Siswa Berprestasi Menggunakan Metode Clustering K-Means. Journal of Information Systems and Informatics, 3(3), 424–439. https://doi.org/10.51519/journalisi.v3i3.164.

Sari, D. P., Rosadi, D., Effendie, A. R., & Danardono. (2019). K-means and bayesian networks to determine building damage levels. Telkomnika (Telecommunication Computing Electronics and Control), 17(2), 719–727. https://doi.org/10.12928/TELKOMNIKA.V17I2.11756.

Satria, C., & Anggrawan, A. (2021). Aplikasi K-Means berbasis Web untuk Klasifikasi Kelas Unggulan. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 21(1), 111–124. https://doi.org/10.30812/matrik.v21i1.1473.

Sembiring Brahmana, R. W., Mohammed, F. A., & Chairuang, K. (2020). Customer Segmentation Based on RFM Model Using K-Means, K-Medoids, and DBSCAN Methods. Lontar Komputer : Jurnal Ilmiah Teknologi Informasi, 11(1), 32. https://doi.org/10.24843/lkjiti.2020.v11.i01.p04.

Seta, P. T., & Hartomo, K. D. (2020). Mapping Land Suitability for Sugar Cane Production Using K-means Algorithm with Leaflets Library to Support Food Sovereignty in Central Java. Khazanah Informatika: Jurnal Ilmu Komputer Dan Informatika, 6(1), 15–25. https://doi.org/10.23917/khif.v6i1.9027.

Sugriyono, S., & Siregar, M. U. (2020). Preprocessing kNN algorithm classification using K-means and distance matrix with students’ academic performance dataset. Jurnal Teknologi Dan Sistem Komputer, 8(4), 311–316. https://doi.org/10.14710/jtsiskom.2020.13874.

Sulistiyawati, A., & Supriyanto, E. (2020). Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan. Jurnal Tekno Kompak, 15(2), 25–36.

Tempola, F., Muhammad, M., & Mubarak, A. (2020). Penggunaan Internet Dikalangan Siswa SD di Kota Ternate: Suatu Survey, Penerapan Algoritma Clustering dan Validasi DBI. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(6), 1153. https://doi.org/10.25126/jtiik.2020722370.

Triayudi, A., & Fitri, I. (2021). Comparison Of The Feature Selection Algorithm In Educational Data Mining. Telkomnika (Telecommunication Computing Electronics and Control), 19(6), 1865–1871. https://doi.org/10.12928/TELKOMNIKA.v19i6.21594.

Uly Aldini, & Wara Pramesti. (2020). Pengelompokan Provinsi Di Indonesia Berdasarkan Indikator Mutu Pendidikan Sekolah Menengah Pertama Tahun 2016 – 2018 Menggunakan Model Based Clustering. J Statistika: Jurnal Ilmiah Teori Dan Aplikasi Statistika, 13(2), 25–38. https://doi.org/10.36456/jstat.vol13.no2.a2905.

Wibowo, A., Moh Makruf, Inge Virdyna, & Farah Chikita Venna. (2021). Penentuan Klaster Koridor TransJakarta dengan Metode Majority Voting pada Algoritma Data Mining. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(3), 565–575. https://doi.org/10.29207/resti.v5i3.3041.

Downloads


Crossmark Updates

How to Cite

Syahputra, Y. H. ., & Hutagalung, J. (2022). Superior Class to Improve Student Achievement Using the K-Means Algorithm. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(3), 891-899. https://doi.org/10.33395/sinkron.v7i3.11458