Tiktok Social Media Sentiment Analysis Using the Nave Bayes Classifier Algorithm


  • Putri Suci Rahmadani Universitas Prima Indonesia
  • Fenny Chintya Tampubolon Universitas Prima Indonesia
  • Adelia Nurfattul Jannah
  • Novia Lucky Halen Hutabarat Universitas Prima Indonesia
  • Allwin M. Simarmata Universitas Prima Indonesia




social media; sentiment analysis; tiktok; negative comments; naïve bayes classifier;


Social media is a computer application designed to make it simpler to communicate with others without having to do it face-to-face, as well as a tool for having fun and reducing feelings of isolation. Existing social media applications include games, music, and media for communicating with distant individuals, among others. These social media are utilized by parents, adolescents, and even young children. The application Tik-Tok is frequently used by children as a social networking platform. Tik-Tok has succeeded in grabbing the interest of youngsters, such that children are curious about creating short movies on the platform. Due to the fact that this application is used by children, the researcher seeks to use the Naïve Bayes Classifier Algorithm to recognize and differentiate unfavorable remarks on TikTok's social media. The rising number of negative remarks in the TikTok comments column can hinder the mental development of youngsters, and it is hoped that this algorithm would encourage users to post positive comments on this application. Based on the data gathering until the results of classification are obtained. There are 600 comments data randomly collected from TikTok users, gathered through the export comments website. After evaluating, the accuracy of the application of the Naïve Bayes Classifier algorithm in conducting sentiment analysis is 80% while the result of the AUC is 46%

GS Cited Analysis


Download data is not yet available.


Ahuja, S., & Dubey, G. (2017). Clustering and sentiment analysis on Twitter data. 2017 2nd International Conference on Telecommunication and Networks (TEL-NET), 1–5. https://doi.org/10.1109/TEL-NET.2017.8343568

Andika, L. A., Amalia, P., & Azizah, N. (2019). Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier. 2(1), 34–41.

Fauzi, A., Akbar, M. F., Ferdi, Y., & Asmawan, A. (2019). Sentimen Analisis Berinternet Pada Media Sosial dengan Menggunakan Algoritma Bayes. 6(1), 77–83.

Indrayuni, E., & Nurhadi, A. (2022). Sentiment Analysis About COVID-19 Booster Vaccine on Twitter Using Deep Learning. 7(3), 900–905.

Kurniasari, I., & Fatta, H. Al. (2021). Analisis Sentimen Opini Publik pada Instagram mengenai Covid-19 dengan SVM. 1(1), 67–74.

Kusuma, A., & Nugroho, A. (2021). Analisa Sentimen Pada Twitter Terhadap Kenaikan Tarif Dasar Listrik Dengan Metode Naïve Bayes. 15(2), 137–146.

Laurensz, B., & Sediyono, E. (2021). Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi Covid-19 ( Analysis of Public Sentiment on Vaccination in Efforts to Overcome the. 10(2), 118–123.

Mawengkang, H., & Sitompul, O. S. (2022). Performance of Naive Bayes method with data weighting. 7(3), 817–821.

Nurhafida, S. I., Sembiring, F., Raya, J., & No, C. (2022). Analisis Sentimen Aplikasi Novel Online Di Google Play Store Menggunakan Algoritma Support Vector Machine ( SVM ). 6, 317–327.

Nurhuda, F., & Sihwi, S. W. (2014). Analisis Sentimen Masyarakat terhadap Calon Presiden Indonesia 2014 berdasarkan Opini dari Twitter Menggunakan Metode Naive Bayes Classifier. 2(2).

Pinka, R., Dakhi, B., & Maezar, A. (2022). Sentiment Analysis Of Public Opinions On The Effectiveness Of Online Learning Using Naïve Bayes Algorithm. 6(1), 273–279. https://doi.org/10.52362/jisicom.v6i1.822

Pintoko, B. M., & L, K. M. (2018). Analisis Sentimen Jasa Transportasi Online pada Twitter Menggunakan Metode Naïve Bayes Classifier. 5(3), 8121–8130.

Putri, D. D., Nama, G. F., & Sulistiono, W. E. (2022). Analisis Sentimen Kinerja Dewan Perwakilan Rakyat ( Dpr ) Pada Twitter Menggunakan Metode Naive Bayes Classifier. 10(1), 34–40.

Sari, F. V. (2019). Analisis Sentimen Pelanggan Toko Online Jd . Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi. 10(2), 681–686.

Verawardina, U., Edi, F., & Watrianthos, R. (2021). Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes. 5(1), 157–163. https://doi.org/10.30865/mib.v5i1.2604

Wilandini, D., & Purwantoro. (2022). Penerapan Algoritma Naïve Bayes Dalam Mengklasifikasikan Media Sosial Untuk Mengamati Trend Kuliner. 8(1), 31–39.

Yennimar, & Rizal, R. A. (2019). Comparison of Machine Learning Classification Algorithms in Sentiment Analysis Product Review of North Padang Lawas Regency. 4(1).

Zulqornain, J. A., & Adikara, P. P. (2021). Analisis Sentimen Tanggapan Masyarakat Aplikasi Tiktok Menggunakan Metode Naïve Bayes dan Categorial Propotional Difference ( CPD ). 5(7), 2886–2890.


Crossmark Updates

How to Cite

Rahmadani, P. S., Tampubolon, F. C., Jannah, A. N., Hutabarat, N. L. H., & Simarmata, A. M. (2022). Tiktok Social Media Sentiment Analysis Using the Nave Bayes Classifier Algorithm. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(3), 995-999. https://doi.org/10.33395/sinkron.v7i3.11579