Edge Detection Of Potato Leaf Damage With Laplacian Of Gaussian Algorithm
DOI:
10.33395/sinkron.v7i3.11583Abstract
The Potato plants are type young plant that easily attacked by pests and diseases, part of plant that often attacked by disease is leaves which can affect growth process and reduce crop yields. One way to determine if potato leaf is healthy or unhealthy is by using the edge detection method. Crop failure in potato plants can be detected through damage to leaves. The purpose of this study was to help facilitate identification type of damage to leaf margins of potato plants by applying the Laplacian of Gaussian algorithm. Based on results of testing on several research datasets sourced from the Agricultural Sector of the Karo Regency Government through an application of edge image detection on potato plant leaves through a grayscale, threshold and detection process with the Laplacian of Gaussian algorithm. It takes the longest time of 12.34 s with an error of 1.45 on the type of damage caused by aphids and at least 6.03 s with an error of 0.71 on the normal leaf edge detection results. Based on test results on 17 potato leaf images, the average test time is 8.45 s
Downloads
References
Ansari, M. A. (2020). Performance Comparison Of Machine Learning Classifiers For The Detection Of Potato Leaf Diseases. 2nd International Conference on Computational Sciences and Technologies (INCCST’20), 2020(December), 17–19.
Budi Daya Tanaman Kentang, Dinas Pertanian, Pemerintah Kabupaten Bulelang, https://distan.bulelengkab.go.id/informasi/detail/artikel/budi-daya-tanaman-kentang-34, [Accesced 1 Juni 2022]
Chen, J., Chen, J., Zhang, D., Sun, Y., Nanehkaran, Y. A., 2020, Using deep transfer learning for image-based plant disease identification, Computers and Electronics in Agriculture, Vol.173, Hal. 105393, doi: 10.1016/j.compag.2020.105393.
Dahliatul Fitriyah Ningsih, 2021. Klasifikasi Jenis Penyakit Daun Kentang Menggunakan Convolutional Neural Network(CNN) Model Arsitektur Googlenet. Tidak Diterbitkan, Teknik Informatika, Universitas Yudharta Pasuruan, Pasuruan
Endri Dwi Prasetyo, Deteksi Tepi Menggunakan Metode Laplacian of Gaussian Pada Citra Bola Futsal, TIN: Terapan Informatika Nusantara, Vol 1, No 6, Nopember 2020, Hal 309-316
Greeshma O S. Leaf Disease Classification Based on Edge Detection Using Training Neural Network, Applied Science University Journal (ASUJ). Vol. 5 No. 1 Jan. (2021)
Hasanuddin Gulo, Penerapan Laplacian of GaussianDalam Mendeteksi Tepi Luka Bakar Pada Manusia, TIN: Terapan Informatika Nusantara, Vol 1, No 7, Desember2020, Hal 339-349
Hotma Pangaribuan, Optimalisasi Deteksi Tepi Dengan Metode Segmentasi Citra, Information System Development, Volume 4 No.1 Januari 2019, Hal 30-38
Islam, M., Dinh, A., & Wahid, K. (2017). Detection of Potato Diseases Using Image Segmentation and Multiclass Support Vector Machine. 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), page 8–11.
Martinus HN, 2020, Penerapan Metode Log (Laplacian Of Gaussian) Dalam Mendeteksi Tepi Citra Pada Penyakit Aterosklerosis, Jurnal Pelita Informatika, Volume 8, Nomor 4, April 2020
Nazaruddin Ahmad, Iskandar, Metode Forward Chaining untuk Deteksi Penyakit Pada Tanaman Kentang, JINTECH: Jurnal of Information Technology, Vol.1, No. 2, Agustus 2020: Halaman: 7-19
P. U Rakhmawati, Y. M Pranoto, dan E Setyati, Klasifikasi Penyakit Daun Kentang Berdasarkan Fitur Tekstur Dan Fitur Warna Menggunakan Support Vector Machine, Seminar Nasional Teknologi dan Rekayasa (SENTRA), 2018
Pertanian dan Perlindungan Tanaman, Solusi BASF untuk tanaman Kentang, https://petani-sejahtera.basf.co.id/kentang, [Accessed, 1 Januari 2020]
Rocky Haryono. Penerapan Metode Laplacian Of Gaussian Dalam Mendeteksi Tepi Citra Pada Penyakit Meningitis, KLIK (Kajian Ilmiah Informatika & Komputer), Vol. 1 No. 1, Agustus 2020. Hal 20-26
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2022 Mawaddah Harahap, Adrian Christian Wijaya, Samuel Henock Hasangapon Pasaribu, Giovan Sembiring, Kenjiro Christian Ginting

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.