THE CYCLE LENGTH OF SPARSE REGULAR GRAPH
DOI:
10.33395/sinkron.v7i3.11595Abstract
Let be a reguler graph with girth . Set of cycle length in Graf is denoted by . Graph is a sparse graph if and only if . Furthermore, it was obtained the number of cycle length of sparse reguler graph which denoted is .
Downloads
References
A. Bondy. (1971). Pancyclic graphs I: J. Combinatorial. Theory Ser. B 11, 80-84.
A. Bondy and M. Sinovits. Cycles of even length in graphs: J. Combinatorial Theory Ser. B. 16 (1974).97-105
A. Bondy and U.S.R. Murty, Graph theory: Graduate Texts in Mathematics. 244.
B. Bollobas. (1977). Cycles modulo k, Bull. London Math. Soc. 9.97-98.
B. Bollobas and A. Thomason. (1999). Weakly pancyclic graphs: J. Combinatorial Theory Ser. B77. 121-137.
Anastos, M and Frieze, A. (2021). A scaling limit for the length of the longest cycle in a sparse random graph: Journal of Combinatorial Theory, Series B 148. 184-208.
Dutton, R. Ho, Y.Y. (2011). Global secure sets of grid-like graphs. Discrete Appl. Math. 159. 490496.
Furedi, Z, Kostochka, A and Luo, R. (2019). A Variation of A Theorem by Posa: Discrete Mathematics 342. 1919-1923.
G. A. Dirac. (1952). Some theorems on abstract graphs: Proc. London Math. Soc. 2.
-81.
G. Fan. (2002). Distribution of Cycle Lengths in Graph: Journal of Combinatorial Theory Ser. B 84. 187-202.
L, Posa. (1976). Hamiltonian circuits in random graphs: Discrete Mathematics 14. 359-364.
Marinari, E adna Kerrebroeck, V. (2008). Cycle in Sparse Random Graps: Journal of Physics: Conference Series 95. 012014.
P. Erdos. (1993). Some of My Favorite Solved and Unsolved Problems in Graph Theory: Quaestiones Math. 16. 333-350.
P, Erdos dkk. (1997). The Number of Cycle Lengths in Graphs of Given Minimum Degree and Girth: Discrete Mathematics 200. 55-60.
Rinaldi, Munir. (2005). Matematika Diskrit Edisi Ketiga. Informatika. Bandung.
R. Gould, P. Haxell and A. Scott. (2002). A note on cycle lengths in graphs: Graphs and Combinatorics 18. 491–498.
Raymond. J, Thilikos, D. (2017). Techniques and Results on The Erdos-Posa Property: Discrete Applied Mathematics 231. 25-43.
Sudakov, B, Verstraete, J. (2008). Cycle Lengths in Sparse Random Graphs: Combinatorica 28 (3). 357-372.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2022 Claudia Christy, Saib Suwilo, Tulus
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.