• Claudia Christy Universitas Sumatera Utara, Medan, Indonesia
  • Saib Suwilo Universitas Sumatera Utara, Medan, Indonesia
  • Tulus Universitas Sumatera Utara, Medan, Indonesia




Let  be a reguler graph with girth . Set of cycle length in Graf  is denoted by . Graph  is a sparse graph if and only if  . Furthermore, it was obtained the number of cycle length of sparse reguler graph which denoted  is .

GS Cited Analysis


Download data is not yet available.


A. Bondy. (1971). Pancyclic graphs I: J. Combinatorial. Theory Ser. B 11, 80-84.

A. Bondy and M. Sinovits. Cycles of even length in graphs: J. Combinatorial Theory Ser. B. 16 (1974).97-105

A. Bondy and U.S.R. Murty, Graph theory: Graduate Texts in Mathematics. 244.

B. Bollobas. (1977). Cycles modulo k, Bull. London Math. Soc. 9.97-98.

B. Bollobas and A. Thomason. (1999). Weakly pancyclic graphs: J. Combinatorial Theory Ser. B77. 121-137.

Anastos, M and Frieze, A. (2021). A scaling limit for the length of the longest cycle in a sparse random graph: Journal of Combinatorial Theory, Series B 148. 184-208.

Dutton, R. Ho, Y.Y. (2011). Global secure sets of grid-like graphs. Discrete Appl. Math. 159. 490496.

Furedi, Z, Kostochka, A and Luo, R. (2019). A Variation of A Theorem by Posa: Discrete Mathematics 342. 1919-1923.

G. A. Dirac. (1952). Some theorems on abstract graphs: Proc. London Math. Soc. 2.


G. Fan. (2002). Distribution of Cycle Lengths in Graph: Journal of Combinatorial Theory Ser. B 84. 187-202.

L, Posa. (1976). Hamiltonian circuits in random graphs: Discrete Mathematics 14. 359-364.

Marinari, E adna Kerrebroeck, V. (2008). Cycle in Sparse Random Graps: Journal of Physics: Conference Series 95. 012014.

P. Erdos. (1993). Some of My Favorite Solved and Unsolved Problems in Graph Theory: Quaestiones Math. 16. 333-350.

P, Erdos dkk. (1997). The Number of Cycle Lengths in Graphs of Given Minimum Degree and Girth: Discrete Mathematics 200. 55-60.

Rinaldi, Munir. (2005). Matematika Diskrit Edisi Ketiga. Informatika. Bandung.

R. Gould, P. Haxell and A. Scott. (2002). A note on cycle lengths in graphs: Graphs and Combinatorics 18. 491–498.

Raymond. J, Thilikos, D. (2017). Techniques and Results on The Erdos-Posa Property: Discrete Applied Mathematics 231. 25-43.

Sudakov, B, Verstraete, J. (2008). Cycle Lengths in Sparse Random Graphs: Combinatorica 28 (3). 357-372.


Crossmark Updates

How to Cite

Christy, C., Suwilo, S., & Tulus, T. (2022). THE CYCLE LENGTH OF SPARSE REGULAR GRAPH. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(3), 2044-2047.