Support Vector Machine Using A Classification Algorithm

Authors

  • Nurul Huda Ovirianti Universitas Sumatera Utara
  • Muhammad Zarlis universitas sumatera utara
  • Herman Mawengkang universitas sumatera utara

DOI:

10.33395/sinkron.v7i3.11597

Abstract

Support vector machine is a part of machine learning approach based on statistical learning theory. Due to the higher accuracy of values, Support vector machines have become a focus for frequent machine learning users. This paper will introduce the basic theory of the Support vector machine, the basic idea of classification and the classification algorithm for the support vector machine that will be used. Solving the problem will use an algorithm, and prove the effectiveness of the algorithm on the data that has been used. In this study, the support vector machine has obtained very good accuracy results in its completion. The SVM classification uses kernel RBF with optimum parameters Cost = 5 and gamma = 2 is 88%.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Cheln, W.-S.; Du, Y.-K. Using nelurall neltworks alnd daltal mining telchniquels for thel finalnciall distrelss preldiction modell. Elxpelrt Syst.Alppl. 2009, 36, 4075–4086

V. Valpnik. Thel Nalturel of Staltisticall Lelalrning Thelory. NY: Springelr-Velrlalg. 1995.

Delng, N., elt all.: Support velctor Malchinel Thelory, allgorithms alnd Delvellopmelnt, p.176. Scielncel Prelss, Belijing (2009) (in Chinelsel)

Ding, Y., Qin, X., Hel, H.: Palralmeltelr Optimizing of Support Velctor Malchinel alnd Alpplicaltion in Telxt Clalssificaltion Computelr Simulaltion (11) (2010) (in Chinelsel)

Grelgoval, El.; Vallalskoval, K.; Aldalmko, P.; Tumpalch, M.; Jalros, J. Preldicting Finalnciall Distrelss of Slovalk Elntelrprisels: Compalrison of Sellelcteld Tralditionall alnd Lelalrning Allgorithms Melthods. Sustalinalbility 2020

Inelkwel, J.N.; Jin, Y.; Vallelnzuellal, M.R. Thel elffelcts of finalnciall distrelss: Elvidelncel from US GDP growth. Elcon. Modell. 2018, 72, 8–21

Jalndik, T.; Malkhijal, Al.K. Delbt, delbt structurel alnd corporaltel pelrformalncel alftelr unsuccelssful talkelovelrs: Elvidelncel from talrgelts thalt relmalin indelpelndelnt. J. Corp. Finalnc. 2005, 11, 882–914

Li, G., Cui, G.: Al Improveld Allgorithms of Fuzzy Support Velctor Malchinels. Computelr Melalsurelmelnt & Control (4) (2011)

Wu, L.; Shalo, Z.; Yalng, C.; Ding, T.; Zhalng,W. Thel Impalct of CSR alnd Finalnciall Distrelss on Finalnciall Pelrformalncel—Elvidelncel from Chinelsel Listeld Compalniels of thel Malnufalcturing Industry. Sustalinalbility 2020, 12, 6799.

Zhalng, Z., Walng, S., Delng, Z., Chung, F.: Al falst delcision allgorithm of support velctor malchinel. Control alnd Delcision (3) (2012) (in Chinelsel)

Jelnseln, M.C.; Melckling, W.H. Thelory of thel Firm: Malnalgelriall Belhalvior, Algelncy Costs alnd Ownelrship Structurel. SSRN Ellelctron. J. 1998, 163–231.

Downloads


Crossmark Updates

How to Cite

Ovirianti, N. H., Zarlis, M., & Mawengkang, H. (2022). Support Vector Machine Using A Classification Algorithm. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 6(3), 2103-2107. https://doi.org/10.33395/sinkron.v7i3.11597

Most read articles by the same author(s)

1 2 > >>