The Maximum Degree of an Exponentially Distributed Random Graph

Authors

  • Desti Alannora Harahap Universitas Sumatera Utara
  • Saib Suwilo universitas sumatera utara
  • Mardiningsih universitas sumatera utara

DOI:

10.33395/sinkron.v7i3.11602

Abstract

Let G            G (n, p) be a graph on n vertices where each pair of vertices is joined independently with probability p for 0 < p < 1 and q = 1        p. In this work, we introduce weighted random graf G with exponential distribution and investigate that the probability that every vertex of G has degree at most np + bpqn is equal to 0.595656764.

GS Cited Analysis

Downloads

Download data is not yet available.

References

B. Bollobas, “Degree sequences of random graphs,” Discrete Math 33, 1–19 (1981).

B. Bollobas, “Degree sequences of random graphs,” Discrete Math 33, 1–19 (1981).

B. Bollobas, Random Graphs (Academic Press, 1985).

B. D. McKay and N. C. Wormald, “The degree sequence of a random graph,” Random Structures and Algorithms 11, 97–118 (1997).

D. J. Kleitman, “Families of non-disjoint subsets,” J. Combin. Theory 1, 153–155 (1966).

G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes (2nd edn, Clarendon Press, 1992).

O. Riordan and A. Selby, “The maximum degree of a random graph,” Combinatoric, Probability and Computing 9, 549–572 (2000).

P. Erdos and A. Renyi, “On random graphs,” I. Publ. Math. Debrecen 6, 290–297 (1959).

R. Courant and D. Hilbert, Methods of Mathematical Physics (Vol. I, Interscience Publishers, 1953).

S. Bhamidi, S. Chakraborty, S. Cranmer, and B. Desmarais, “Weighted exponential random graph models: Scope and large network limits,” Journal of Statistical Physic 173, 704–735 (2018).

W. Feller, An Introduction to Probability Theory and its Applications (Vol. II, 2nd edn,Wiley, 1971).

Downloads


Crossmark Updates

How to Cite

Harahap, D. A., Suwilo, S., & Mardiningsih. (2022). The Maximum Degree of an Exponentially Distributed Random Graph. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 6(3), 2034-2037. https://doi.org/10.33395/sinkron.v7i3.11602

Most read articles by the same author(s)