Forest fire predicting using Naive Bayes and KNN algorithm
DOI:
10.33395/sinkron.v7i4.11609Keywords:
Forest Fire, Prediction, Machine Learning, Naive Bayes, KNNAbstract
Forest fires are one of the disasters that cause problems for the environment. Forest fires can cause damage and threats, not only to forest resources but also to the entire ecosystem, both fauna and plants that can damage biodiversity and the environment of an area and can endanger human life. The source of forest fires was initially thought to come from a dry and hot environment, but in some cases, forest fires are triggered by human activities in clearing land for agriculture or other purposes. One of the factors that influence the spread of forest fires is several variables combined with humidity levels, wind speed, and rainfall. In this study, researchers used machine learning algorithms KNN and Naïve Bayes to predict forest fires and compare the results of the performance levels of each method used. The results obtained indicate that the naive Bayes method has an accuracy value of 53.33% and K-NN has an accuracy value of 62.66%
Downloads
References
Abdul, Evizal, Sri Listia, Abdul Syukur, and Mahmod Othman. 2022. “Forest Fire Spreading and Carbon Concentration Identification in Tropical Region Indonesia.” Alexandria Engineering Journal 61(2):1551–61. doi: 10.1016/j.aej.2021.06.064.
Bansal, Malti, Apoorva Goyal, and Apoorva Choudhary. 2022. “A Comparative Analysis of K-Nearest Neighbor , Genetic , Support Vector Machine , Decision Tree , and Long Short Term Memory Algorithms in Machine Learning.” Decision Analytics Journal 3(November 2021):100071. doi: 10.1016/j.dajour.2022.100071.
Edwards, Ryan B., Rosamond L. Naylor, Matthew M. Higgins, and Walter P. Falcon. 2020. “Causes of Indonesia’s Forest Fires.” 127. doi: 10.1016/j.worlddev.2019.104717.
Hasnain, Muhammad, Muhammad Fermi Pasha, Imran Ghani, Muhammad Imran, Mohammed Y. Alzahrani, and Rahmat Budiarto. 2020. “Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking.” IEEE Access 8:90847–61. doi: 10.1109/ACCESS.2020.2994222.
Husen, Dede, Dede Sandi, Sepriadi Bumbungan, Universitas Amikom Yogyakarta, Magister Teknik Informatika, Data Mining, and Random Forest. 2022. “Analisis Prediksi Kebakaran Hutan Dengan Menggunakan Algoritma Random Forest Classifier Kebakaran Hutan Dan Lahan Di Indonesia Telah Menjadi Perhatian Dunia Internasional Khususnya Sejak Kebakaran Hutan Yang Terjadi Pada Tahun 80-an [ 2 ]. Penyebab Kebaka.” 16:150–55.
Mahendra, Awanda Putra, Dody Pradipta, Moh. Rizal Bayu Saputro, and Kusrini Kusrini. 2022. “Application of the Decision Tree Method to Forest Fire Detection (Case Study: In Palembang, South Sumatra).” JTECS : Jurnal Sistem Telekomunikasi Elektronika Sistem Kontrol Power Sistem Dan Komputer 2(1):75. doi: 10.32503/jtecs.v2i1.2196.
Mahmoud, Mubarak Adam Ishag, and Honge Ren. 2019. “Forest Fire Detection and Identification Using Image Processing and SVM.” Journal of Information Processing Systems 15(1):159–68. doi: 10.3745/JIPS.01.0038.
Manalu, Darwis Robinson, Muhammad Zarlis, Herman Mawengkang, and Opim Salim Sitompul. 2020. “Forest Fire Prediction in Northern Sumatera Using Support Vector Machine Based on the Fire Weather Index.” (December):187–96. doi: 10.5121/csit.2020.101915.
Margono, Belinda Arunarwati, and Ahmad Basyirudin Usman. 2016. “Indonesia ’ s Forest Resource Monitoring.” 48(1).
Mohajane, Meriame, Romulus Costache, Firoozeh Karimi, Quoc Bao Pham, Ali Essahlaoui, Hoang Nguyen, Giovanni Laneve, and Fatiha Oudija. 2021. “Application of Remote Sensing and Machine Learning Algorithms for Forest Fire Mapping in a Mediterranean Area.” Ecological Indicators 129(June):107869. doi: 10.1016/j.ecolind.2021.107869.
Mohammed, Zouiten, Chaaouan Hanae, and Setti Larbi. 2020. “Comparative Study on Machine Learning Algorithms for Early Fire Forest Detection System Using Geodata.” International Journal of Electrical and Computer Engineering 10(5):5507–13. doi: 10.11591/IJECE.V10I5.PP5507-5513.
Musabašić, Mursel, Denis Mušić, and Elmir Babović. 2021. “Fire Prediction with Logistic Regression on Territory of Bosnia and Herzegovina.” IOP Conference Series: Materials Science and Engineering 1208(1):012033. doi: 10.1088/1757-899x/1208/1/012033.
Muslim, Ichwanul, Karo Karo, Sisti Nadia Amalia, and Dian Septiana. 2022. “Klasifikasi Kebakaran Hutan Menggunakan Feature Selection Dengan Algoritma K- NN , Naive Bayes Dan ID3.” 3(1):121–26.
Nugroho, T. B., and E. Sugiharti. 2021. “The Improvement of C4. 5 Algorithm Accuracy in Predicting Forest Fires Using Discretization and AdaBoost.” Journal of Advances in Information … 3(April):43–52.
Pasha, Syed Matheen, and U. Lisha. 2021. “Forest Fire Prediction Using ML and AI.” 7(3):2197–2200.
Prayoga, M. Bayu Rizky. 2021. “Improving Forest Fire Mitigation in Indonesia : A Lesson from Canada.” 9:293–305. doi: 10.14710/jwl.9.3.293-305.
Rasjid, Zulfany Erlisa, and Reina Setiawan. 2017. “Performance Comparison and Optimization of Text Document Classification Using K-NN and Naïve Bayes Classification Techniques.” Procedia Computer Science 116:107–12. doi: 10.1016/j.procs.2017.10.017.
Rishickesh, Ramesh, A. Shahina, and A. Nayeemulla Khan. 2019. “Predicting Forest Fires Using Supervised and Ensemble Machine Learning Algorithms.” International Journal of Recent Technology and Engineering 8(2):3697–3705. doi: 10.35940/ijrte.B2878.078219.
Riyanto, Indra Agus, Ahmad Cahyadi, Faricha Kurniadhini, Hafidz Bachtiar, Dwiki Apriyana, and Kannardi Aji Caraka. 2020. “Understanding Forest Fire Management in Indonesia from a Global Perspective.” 37(1):1–6. doi: 10.29037/ajstd.593.
Rostami, Amirhossein, Reza Shah-Hosseini, Shabnam Asgari, Arastou Zarei, Mohammad Aghdami-Nia, and Saeid Homayouni. 2022. “Active Fire Detection from Landsat-8 Imagery Using Deep Multiple Kernel Learning.” Remote Sensing 14(4). doi: 10.3390/rs14040992.
Singh, Kajol R., K. P. Neethu, K. Madhurekaa, A. Harita, and Pushpa Mohan. 2021. “Parallel SVM Model for Forest Fire Prediction.” Soft Computing Letters 3(June):100014. doi: 10.1016/j.socl.2021.100014.
Wood, David A. 2021. “Prediction and Data Mining of Burned Areas of Forest Fires: Optimized Data Matching and Mining Algorithm Provides Valuable Insight.” Artificial Intelligence in Agriculture 5:24–42. doi: 10.1016/j.aiia.2021.01.004.
How to Cite
Issue
Section
License
Copyright (c) 2022 Muhammad Salimy Ahsan, Zakaria Zakaria, Zulpan Hadi, Samuel Everth Andrias Kurni, Kusrini Kusrini
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.