Analysis of Data classification accuracy using ANFIS algorithm modification with K-Medoids clustering


  • Desy Milbina Br Bangun Universitas Sumatera Utara
  • Syahril Efendi Universitas Sumatera Utara, Medan, Indonesia
  • Rahmat W Sembiring Universitas Sumatera Utara, Medan, Indonesia




The ANFIS algorithm is a technique in data mining that can be used for the data classification process. The ANFIS algorithm still has weaknesses, especially in determining the initial parameters for the network training process. Thus, an additional algorithm or modification is needed for the determination of these parameters. In this study, a clustering method will be proposed, namely K-Medoids Clustering as an additional method to the ANFIS algorithm. Basically, the ANFIS algorithm uses the FCM (Fuzzy C-Means Clustering) algorithm for the initial initialization of network parameters. The use of this method can cause local minima problems, where the clustering results obtained are not optimal because the pseudo-partition matrix generation process is carried out randomly. The matrix value will determine the initial parameter value in the ANFIS algorithm used in the first layer. Based on the research that has been done, it can be concluded that the accuracy of data classification using the ANFIS algorithm which has been modified with the proposed method provides a fairly good influence in conducting training and classification testing. The increase that occurs in the proposed method is 0.73% for the average training accuracy and an increase of 0.66% for the average testing accuracy.

GS Cited Analysis


Download data is not yet available.


Ahmed, K. & Jesmin, T. (2014). Comparative Analysis of Data Mining Classification Algorithms in Type-2 Diabetes Prediction Data Using WEKA Approach. International Journal of Science and Engineering. Doi: 10.12777/ijse.7.2.155- 160

Alaoui, S.S., Farhaoui, Y. & Aksasse, B. (2018). Classification algorithms in Data Mining. International Journal of Tomography and Simulation. 31. 34-44.

Alia, M., Muhlasin, Nurohmah, H., Raikhani, A., Sopian, H., & Sutantra, N. (2018). Combined ANFIS method with FA, PSO, and ICA as Steering Control Optimization on Electric Car. 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS). Doi: 10.1109/eeccis.2018.869288

Ata, R. & Kocyigit, Y. (2010). An Adaptive Neuro Fuzzy Inference System Approach for Prediction of Tip Speed Ratio in Wind Turbines. Expert System with Applications 37, 5454-5460. Doi: 10.1016/j.eswa.2010.02.068

Balasubramanian, K. & Ananthamoorthy, N.P. (2020). Improved adaptive neurofuzzy inference system based on modified glowworm swarm and differential evolution optimization algorithm for medical diagnosis. Neural computing & applications, 1–12. Advance online publication. Doi: 10.1007/s00521-020- 05507-0

Basyarah, A.N., Fatichah, C. & Murti, D.H. 2016. Inisialisasi Pusat Cluster Menggunakan Artificial Bee Colony Pada Algoritma Possibilistic Fuzzy CMeans Untuk Segmemntasi Citra. Inspiration: Jurnal Teknologi Informasi dan Komunikasi.

Bushara, N.O. & Abraham, A. (2015). Using Adaptive Neuro-Fuzzy Inference System (ANFIS) to Improve the Long-term Rainfall Forecasting. Journal of Network and Innovative Computing, pp. 146-158. Volume3-Issue1/Paper15.pdf

Chopra, S., Dhiman, G., Sharma, A., Shabaz, M., Shukla, P. & Arora, M. 2021. Taxonomy of Adaptive Neuro-Fuzzy Inference System in Modern Engineering Sciences. Computational Intelligence and Neuroscience. DOI: 10.1155/2021/6455592

Harikumar, S. & Surya, P.V. (2015). K-Medoid Clustering for Heterogeneous DataSets. International Conference on Eco-friendly Computing and Communication Systems (ICECCS). Doi: 10.1016/j.procs.2015.10.077

Hussain, K. & Salleh, M. (2016). Analysis of techniques for anfis rule-base minimization and accuracy maximization. ARPN Journal of Engineering and Applied Sciences. Doi: 10.13140/RG.2.1.1324.5525

İsen, E & Boran, S. (2017). A Novel Approach Based on Combining ANFIS, Genetic Algorithm and Fuzzy C-Means Methods for Multiple Criteria Inventory Classification. Arabian Journal for Science and Engineering. Doi: 10.1007/s13369-017-2987-z

Jang, J. S. R., Sun, C.T. & Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing, A Computational Approach to Learning and Machine Intelligence. Prentice-Hall International, Inc, USA Kaur, N.K.,

Kaur, U. & Singh, D.D. (2014). K-Medoid Clustering Algorithm- A Review, International Journal of Computer Application and Technology. AlgorithmA_Review? auto=download

Prasetyo, E. (2014). Data Mining: Mengolah Data Menjadi Informasi Menggunakan Matlab. Yogyakarta: Penerbit ANDI

Roy, S., Sadhu, S., Bandyopadhyay, S., Bhattacharyya, D. & Kim, T. (2016). Brain Tumor Classification using Adaptive Neuro-Fuzzy Inference System from MRI. International Journal of Bio-Science and Bio-Technology. Doi: 10.14257/ijbsbt.2016.8.3.21

Saleh, A., Suryandy, D. & Nainggolan, J. 2021. Face Image Retrieval System Using Combination Method of Self Organizing Map and Normalized Cross Correlation. INFOKUM, 9(2, June), 219-228. Retrieved from

Salleh, M., Talpur, N. & Hussain, K. (2018). A Modified Neuro-Fuzzy System Using Metaheuristic Approaches for Data Classification. IntechOpen. Doi: 10.5772/intechopen.75575

Salleh, M.N.M., Hussain, K., Naseem, R. & Uddin, J. (2016). Optimization of ANFIS Using Artificial Bee Colony Algorithm for Classification of Malaysian SMEs. Recent Advances on Soft Computing and Data Mining, 21–30. Doi: 10.1007/978-3-319-51281-5_3

Schubert, E. & Rousseeuw, P.J. (2021). Fast and eager k-medoids clustering: O(k) runtime improvement of the PAM, CLARA, and CLARANS algorithms. Information Systems - ScienceDirect. Doi: 10.1016/

Septiarini, T. & Musikasuwan, S. (2018). Investigating the performance of ANFIS model to predict the hourly temperature in Pattani, Thailand. Journal of Physics: Conference Series. 1097. 012085. Doi: 10.1088/1742- 6596/1097/1/012085

Shamsuddin, N. & Mahat, N. (2019). Comparison Between k-Means and k-Medoids for Mixed Variables Clustering. Proceedings of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017). Doi: 10.1007/978-981-13-7279-7_37

Sharma, N. & Singh, P. 2017. Iris Recognition System Using ANFIS Classifier. International Journal of Science and Research (IJSR). Doi: 10.21275/art20164427

Sivakumar, S., Venkataraman, S. & Bwatiramba, A. (2020). Classification Algorithm in Predicting the Diabetes in Early Stages. Journal of Computer Science. Doi: 10.3844/jcssp.2020.1417.1422

Soni, K. & Patel, A. (2017). Comparative Analysis of K-means and K-medoids Algorithm on IRIS Data. International Journal of Computational Intelligence Research.

Sönmez, A., Kale, S. & Ozdemir, R.C. & Kadak, A. (2018). An Adaptive NeuroFuzzy Inference System (ANFIS) to Predict of Cadmium (Cd) Concentrations in the Filyos River, Turkey. Turkish Journal of Fisheries and Aquatic Sciences. 18. 1333-1343. Doi: 10.4194/1303-2712-v18_12_01

Tiwari, S., Babbar, R. & Kaur, G. (2018). Performance Evaluation of Two ANFIS Models for Predicting Water Quality Index of River Satluj (India). Advances in Civil Engineering. 2018. 1-10. Doi: 10.1155/2018/8971079.

Valentina, T., Tarno, T. & Prahutama, A. (2019). Pemilihan Input Model ANFIS untuk Data Runtun Waktu Menggunakan Metode Forward Selection Dilengkapi GUI Matlab (Studi Kasus: Jumlah Penumpang Kereta Api di Wilayah Jawa Non Jabodetabek). Jurnal Gaussian. 8. 233-243. Doi: 10.14710/j.gauss.v8i2.26668

Verma, A. (2018). Study and Evaluation of Classification Algorithms in Data Mining. International Research Journal of Engineering and Technology (IRJET).

Xianfeng, Y & Pengfei, L. 2015. Tailoring Fuzzy C-Means Clustering Algorithm for Big Data Using Random Sampling and Particle Swarm Optimization. International Journal of Database Theory and Application. 7. 191-202.

Yeom, C-U. & Kwak, K-C. (2018). Performance Comparison of ANFIS Models by Input Space Partitioning Methods. Symmetry. Doi: 10. 700. 10.3390/sym10120700


Crossmark Updates

How to Cite

Br Bangun, D. M., Efendi, S. ., & Sembiring, R. W. . (2022). Analysis of Data classification accuracy using ANFIS algorithm modification with K-Medoids clustering. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(3), 2080-2088.