Classification of Tuberculosis Based on Lung X-Ray Image With Data Science Approach Using Convolutional Neural Network
DOI:
10.33395/sinkron.v7i4.11711Keywords:
Tuberclosis, X-Ray Image, Lung, Data Science, CNNAbstract
Tuberculosis (TB) is a potentially serious infectious disease in the lungs, becoming 1 of 10 causes of death. In Indonesia, the disease is ranked third after India and China with 824,000 cases and 93,000 deaths per year, equivalent to 11 deaths per hour. The increasing number of infections and deaths from TB disease is recorded as a result of its transmission, lack of early diagnosis, and inadequate professional radiologists in developing areas where TB is more common. Rapid and accurate diagnosis is essential for appropriate treatment to be initiated. Diagnosis is usually done by looking at the results of the x-ray image of the thorax and the results of the BTA test on the patient. To classify lung x-ray images detected tuberculosis or not, a study was carried out using the Convolutional Neural Network (CNN) method. The test results produce the last epochs value of 200, the accuracy obtained is 0.9892, which means the CNN accuracy is 98%, with validation the accuracy obtained is 0.9835 or 98%. So the results of the classification test using CNN are quite accurate. With the acquisition of CNN results which is quite high, it can be used as a consideration to be used in classifying TB disease.
Downloads
References
Abdulfattah E. Ba Alawi, Ahmed Y. A. Saeed, Murad A. Rassam, 2021, "The Role of Pre-trained Models in Diagnosing Covid-19 Using Chest X-Ray Images", 2021 1st International Conference on Emerging Smart Technologies and Applications (eSmarTA), pp.1-6.
Accurate. Data Science Adalah Profesi yang Makin Dibutuhkan Perusahaan, Ini Perannya!, January 26th 2022, https://accurate.id/lifestyle/data-science adalah/#:~:text=Proses%20dalam%20melakukan%20data%20science,tujuan%20bisnis%20secara%20lebih%20lancar
Erlyna Nour Arrofiqoh dan Harintaka, Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Tanaman Pada Citra Resolusi Tinggi. 2018, Geomatika Volume 24 No 2 November: 61-68. http://dx.doi.org/10.24895/JIG.2018.24-2.810
Femil Paraijun, Rosida Nur Aziza, Dwina Kuswardani. Implementasi Algoritma Convolutional Neural Network Dalam Mengklasifikasi Kesegaran Buah Berdasarkan Citra Buah, 2022, KILAT. Vol. 11, No. 1, April, P-ISSN 2089-1245, E-ISSN 2655-4925.
Germas, Kementrian Kesehatan Republik Indonesia. Strategis Nasional Penanggulangan Tuberkulosis di Indonesia 2020-2024. 04/06/2021. https://tbindonesia.or.id/informasi/strategi-nasional/strategis-nasional-penanggulangan-tuberkulosis-di-indonesia-2020-2024/
Glints. Data Science: Arti, Manfaat, Proses, dan Contoh Penerapannya. 12 Jan 2022. https://glints.com/id/lowongan/data-science-adalah/#.YuTiOy2l0_N
Infodatin, Pusat data dan informasi kementrian kesehatan RI. “Tuberklosis”. ISSN 2442-7659. https://pusdatin.kemkes.go.id/resources/download/pusdatin/infodatin/infodatin-tuberkulosis-2018.pdf
M. Yusoff, M. S. I. Saaidi, A S. Md Afendi, A. M. Hassan, Tuberculosis X-Ray Images Classification based Dynamic Update Particle Swarm Optimization with CNN, 2021, Journal of Hunan University (Natural Sciences), Vol. 48. No. 9. September.
Mitra Keluarga. “Tuberkulosis (TBC), Kenali Gejala, Penyebab dan Cara Penularan”, Rabu, 23 Maret 2022, https://www.mitrakeluarga.com/artikel/artikel-kesehatan/tuberkulosis
Muhammad Rafly Alwanda, Raden Putra Kurniawan Ramadhan, Derry Alamsyah. Implementasi Metode Convolutional Neural Network Menggunakan Arsitektur LeNet-5 untuk Pengenalan Doodle, 2020, Jurnal Algoritme Vol. 1, No. 1, Oktober , Hal. 45–56
Oloko-Oba, M., Viriri, S., 2020. Diagnosing Tuberculosis Using Deep Convolutional Neural Network. In: El Moataz, A., Mammass, D., Mansouri, A., Nouboud, F. (eds) Image and Signal Processing. ICISP 2020. Lecture Notes in Computer Science(), vol 12119. Springer, Cham. https://doi.org/10.1007/978-3-030-51935-3_16
Saeful Bahri, Rusda Wajhillah, Miftah Farid Adiwisastra, Diagnosa Tuberculosis Paru Berbasis Citra X-ray Menggunakan Convolutional Neural Network, 2021, IJCIT (Indonesian Journal on Computer and Information Technology) 6 (2), 181-186
Sehat negeriku sehatlah bangasaku. “Tahun ini, Kemenkes Rencanakan Skrining TBC Besar-besaran”, 22 Maret 2022, https://sehatnegeriku.kemkes.go.id/baca/rilis-media/20220322/4239560/tahun-ini-kemenkes-rencanakan-skrining-tbc-besar-besaran/
Sehat. “Kenali penyebab dan gejalaTBC paru yang menular”. Kontan.co.id. Rabu, 15 Desember 2021. https://kesehatan.kontan.co.id/news/kenali-penyebab-dan-gejalatbc-paru-yang-menular.
Tri Kristini, Rana Hamidah, Potensi Penularan Tuberculosis Paru pada Anggota Keluarga Penderita. Jurnal Kesehatan Masyarakat Indonesia. Volume 15, Nomor 1, Mei 2020. https://jurnal.unimus.ac.id/index.php/jkmi, jkmi@unimus.ac.id
Tuti Purwaningsih, Imania Ayu Anjani, Pertiwi Bekti Utami. Convolutional Neural Networks Implementation for Chili Classification. 2018 International Symposium on Advanced Intelligent Informatics (SAIN). Hal 190-194. 978-1-5386-5280-0/18/$31.00 ©2018 IEEE
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2022 Mawaddah Harahap, Alfeus P. S. Pasaribu, Dedy Ridoly Sinaga, Romulus Sipangkar, Samuel
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.