Data Mining using clustering method to predict the spread of Covid 19 based on screening and tracing results

Authors

  • Allwin M. Simarmata
  • Riwanto Manik Universitas Prima Indonesia
  • Ourent Chrisin Renatta Simanjorang
  • Dymas Frepian Purba

DOI:

10.33395/sinkron.v7i4.11740

Keywords:

Spread, Covid-19, Data Mining, Classification, K-Means Algorithm

Abstract

Coronavirus is a virus that causes disease in humans and animals. The virus was discovered in Wuhan, China in December 2019. Initially, it was suspected to be pneumonia, with general symptoms similar to the flu. However, unlike influenza, coronaviruses can progress rapidly, leading to more severe infections and organ failure. The number of COVID-19 sufferers in Indonesia is increasing every month. Anticipation and reducing the number of people infected with the coronavirus in Indonesia have been carried out in all regions. Including providing policies that limit activities outside the home. Indonesia has a very wide area, so it is necessary to classify the spread of Covid-19 based on regions or regions in Indonesia. This grouping provides a central point for the spread of Covid-19 pandemic cases in Indonesia. In testing data using data mining, data mining allows users to find knowledge in databases that were previously unknown to the user. By using the Clustering technique and the K-Means algorithm to predict the spread of COVID-19 based on the results of screening and tracing. The Clustering method produces 3 clusters, Cluster 0 with a medium category with a total of 6 regions, Cluster 1 with a low category with a total of 3 regions, and Cluster 2 with a high cluster with a total of 7 regions, with a DBI value of -0.784.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Adha, R., Nurhaliza, N., Sholeha, U., & Mustakim, M. (2021). Perbandingan Algoritma DBSCAN dan K-Means Clustering untuk Pengelompokan Kasus Covid-19 di Dunia. SITEKIN: Jurnal Sains, Teknologi Dan Industri, 18(2), 206–211.

Akramunnisa, & Fajriani. (2020). K-Means Clustering Analysis pada PersebaranTingkat Pengangguran Kabupaten/Kota di Sulawesi Selatan. Jurnal Varian, 3(2), 103–112. https://doi.org/10.30812/varian.v3i2.652

Asroni, A., Fitri, H., & Prasetyo, E. (2018). Penerapan Metode Clustering dengan Algoritma K-Means pada Pengelompokkan Data Calon Mahasiswa Baru di Universitas Muhammadiyah Yogyakarta (Studi Kasus: Fakultas Kedokteran dan Ilmu Kesehatan, dan Fakultas Ilmu Sosial dan Ilmu Politik). Semesta Teknika, 21(1), 60–64. https://doi.org/10.18196/st.211211

Bastian, A., Sujadi, H., & Febrianto, G. (2018). Penerapan Algoritma K-Means Clustering Analysis Pada Penyakit Menular Manusia (Studi Kasus Kabupaten Majalengka). Jurnal Sistem Informasi (Journal of Information System), 14(1), 26–32.

Bu’ulolo, E., & Purba, B. (2021). Algoritma Clustering Untuk Membentuk Cluster Zona Penyebaran Covid-19. Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, 12(1), 59–67. https://doi.org/10.31849/digitalzone.v12i1.6572

Dwitri, N., Tampubolon, J. A., Prayoga, S., R.H Zer, F. I., & Hartama, D. (2020). Penerapan Algoritma K-Means Dalam Menentukan Tingkat Penyebaran Pandemi Covid-19 Di Indonesia. Jurnal Teknologi Informasi, 4(1), 128–132. https://doi.org/10.36294/jurti.v4i1.1266

Gayatri, L., & Hendry, H. (2021). Pemetaan Penyebaran Covid-19 Pada Tingkat Kabupaten/Kota Di Pulau Jawa Menggunakan Algoritma K-Means Clustering. Sebatik, 25(2), 493–499. https://doi.org/10.46984/sebatik.v25i2.1307

Gustientiedina, Adiya, M. H., & Desnelita, Y. (2019). Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan. Jurnal Nasional Teknologi Dan Sistem Informasi, 5(1), 17–24. https://doi.org/10.25077/teknosi.v5i1.2019.17-24

Mona, N. (2020). Konsep Isolasi Dalam Jaringan Sosial Untuk Meminimalisasi Efek Contagious (Kasus Penyebaran Virus Corona Di Indonesia). Jurnal Sosial Humaniora Terapan, 2(2), 117–125. https://doi.org/10.7454/jsht.v2i2.86

Mursalim, Purwanto, & Soeleman, M. A. (2021). Penentuan Centroid Awal Pada Algoritma K-Means Dengan Dynamic Artificial Chromosomes Genetic Algorithm Untuk Tuberculosis Dataset. Techno.Com, 20(1), 97–108. https://doi.org/10.33633/tc.v20i1.4230

Salsabila, F., & Intani, S. M. (2021). Implementasi Algoritma K-Means Dan C4.5 Dalam Menentukan Tingkat Penyebaran Covid-19 Di Indonesia. Jurnal Siliwangi, 7(1), 25–30.

Sari, Y. P., Primajaya, A., & Irawan, A. S. Y. (2020). Implementasi Algoritma K-Means untuk Clustering Penyebaran Tuberkulosis di Kabupaten Karawang. INOVTEK Polbeng - Seri Informatika, 5(2), 229. https://doi.org/10.35314/isi.v5i2.1457

Virantika, E., Kusnawi, & Ipmawati, J. (2022). Evaluasi Hasil Pengujian Tingkat Clusterisasi Penerapan Metode K-Means Dalam Menentukan Tingkat Penyebaran Covid-19 di Indonesia. Jurnal Media Informatika Budidarma, 6(3), 1657–1666. https://doi.org/10.30865/mib.v6i3.4325

Watratan, A. F., B, A. P., & Moeis, D. (2020). Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia. Journal of Applied Computer Science and Technology, 1(1), 7–14. https://doi.org/10.52158/jacost.v1i1.9

Yunus, N. R., & Rezki, A. (2020). Kebijakan Pemberlakuan Lockdown Sebagai Antisipasi Penyebaran Corona Virus Covid-19. SALAM: Jurnal Sosial Dan Budaya Syar-I, 7(3), 227–238. https://doi.org/10.15408/sjsbs.v7i3.15083

Downloads


Crossmark Updates

How to Cite

Simarmata, A. M., Manik, R., Simanjorang, O. C. R. ., & Purba, D. F. . (2022). Data Mining using clustering method to predict the spread of Covid 19 based on screening and tracing results. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 6(4), 2355-2360. https://doi.org/10.33395/sinkron.v7i4.11740