Implementation of Data Mining to predict sales of Bogo helmets using the Naïve Bayes algorithm

Authors

  • Kartika Mariskhana Universitas Bina Sarana Informatika, Indonesia
  • Ita Dewi Sintawati Universitas Bina Sarana Informatika, Indonesia
  • Widiarina Universitas Bina Sarana Informatika, Indonesia

DOI:

10.33395/sinkron.v7i4.11768

Keywords:

Helmet, Bogo, Naïve Buyes , Sales

Abstract

Consumer needs for safety and comfort in driving are very important, especially for two-wheeled or motorcycle riders. A good helmet is a helmet that is safe and comfortable when worn. Helmet qualifications that meet SNI standards are open helmets and closed helmets. Transactions are carried out online, because it was still in a pandemic situation when it was established. By carrying the tag line "Ride Safety With Your Own Style", trying to educate the younger generation to keep paying attention to safety when driving but also not neglecting fashion. For the type of sale of bogo and retro helmet brands, with a variety of colors and affordable prices. A common problem faced is how to predict or forecast future helmet sales based on pre-recorded data. This prediction is very influential on the decision to determine the number of helmets that must be provided, if you order helmets in sufficient quantities and it turns out that only a few helmet sales are sold and this will cause the stock of helmets to accumulate. The results of predictions for the sale of bogo helmets in Baris True Instances amounted to 16 data, which means Valid with 53% data accuracy. Meanwhile, there are 10 data classified as Instancely Classified Instance which means Invalid, with data accuracy of 46.67%. The amount of accuracy in the Weka application is the same as the amount of accuracy in Excel calculations. From the explanation above, the Naïve Bayes algorithm method is the best solution for predicting important things in a business need and others.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Albert. (2020). Deteksi Helm pada Pengguna Sepeda Motor dengan Metode Convolutional Neural Network. Jurnal Infra, 8(1), 295–301.

Annur, H. (2018). Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes. ILKOM Jurnal Ilmiah, 10(2), 160–165. https://doi.org/10.33096/ilkom.v10i2.303.160-165

Azis, N. (2021). Rancang Bangun Aplikasi Penjualan Rumah Berbasis Android. Jurnal Information System, I(2), 54–60. Retrieved from http://journal.teknikunkris.ac.id/index.php/jis/article/download/138/118

Damara Satrio Deifa, M. (2021). Sistem Prediksi Minat Penjualan Jaket di Grosir Murah Kediri Menggunakan Metode Naive Bayes. Seminar Nasional Inovasi Teknologi, 1(1), 310–314.

Fatah, R. (2018). Penegakan Hukum Terhadap Keberadaan Becak Motor Sebagai Angkutan Umum. Jurnal TeknikUniversitas Negeri Gorontal, 4, 1–20.

Imam, A. (2019). Analisis Pola Konsumsi Masyarakat Dalam Rangka Mendukung Percepatan Pembangunan Daerah (Studi pada Hinterland Madiun). Birokrasi Pancasila: Jurnal Pemerintahan, Pembangunan Dan Inovasi Daerah, 1(1), 52–77.

Mutiara, E.-. (2020). Algoritma Klasifikasi Naive Bayes Berbasis Particle Swarm Optimization Untuk Prediksi Penyakit Tuberculosis (Tb). Swabumi, 8(1), 46–58. https://doi.org/10.31294/swabumi.v8i1.7668

Nelisa. (2018). Perancangan Aplikasi Data Mining Transaksi Penjualan untuk Mengetahui Pola Beli Konsumen pada Toko Singgalang Padang Menggunakan Algoritma Apriori Berbasis Web. Majalah Ilmiah UPI YPTK, 25(1), 37–44. https://doi.org/10.35134/jmi.v25i1.27

Prasetyawan, P. (2021). Internet of Thing Menggunakan Firebase dan Nodemcu untuk Helm Pintar. Jurnal ELTIKOM, 5(1), 32–39. https://doi.org/10.31961/eltikom.v5i1.239

Prayoga, N. D. (2018). Sistem Diagnosis Penyakit Hati Menggunakan Metode Naïve Bayes. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK), 2(8), 2666–2671.

Retnowati, F. (2019). Aplikasi Data Mining Untuk Prediksi Tingkat Kelulusan Siswa Dengan Menggunakan Metode Naive. … Nasional Science and …, 4(Sens 4), 247–251. Retrieved from http://conference.upgris.ac.id/index.php/sens4/article/download/668/419

Rian Sacipto. (2019). Analisa Terhadap Pengetahuan Remaja Dalam Mengenakan Helm SNI Berdasarkan UU no. 22 Tahun 2009 (Di lingkungan Universitas Ngudi Waluyo Kabupaten Semarang). INTEGRALISTIK, 2009(1), 39–51.

Rizki, A. (2021). Teknologi Biometrik. In Teknologi Biometrik. Retrieved from http://www.adityarizki.net/teknologi-biometrik/

Sari, R. M. (2022). Implementasi Data Mining Untuk Memprediksi Penjualan Menggunakan Metode Penelitian Pendahuluan Pengumpulan Data Analisis dan Perancangan Implementasi Pengujian. Senashtek, 74–82.

Sulastri. (2017). Penerapan Data Mining Untuk Prediksi Rating Penjualan Buku Menggunakan Metode Naive Bayes. Duta.Com, 12(2), 57–72.

Susanto, A. (2022). Rancang Bangun Aplikasi E-Commerce Penjualan Helm Menggunakan Metode Simple Additive Weighting (Saw) (Studi Kasus: Gallery Helm Jogja). Jurnal Teknologi Dan Sistem Informasi Bisnis, 4(1), 20–34.

Triayudi, A. (2017). Mengukur Tingkat Pembiayaan Kredit Pada PT . Trihamas Finance Menggunakan Algoritma Apriori-Data Mining. Jurnal ProTekInfo, 4, 1–5.

Downloads


Crossmark Updates

How to Cite

Mariskhana, K., Sintawati, I. D. ., & Widiarina, W. (2022). Implementation of Data Mining to predict sales of Bogo helmets using the Naïve Bayes algorithm. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(4), 2303-2310. https://doi.org/10.33395/sinkron.v7i4.11768